Nonlinear Multiresolution Image **Blending**

RESEARCH Computer Laboratory, University of Cambridge, United Kingdom

A Detail Enhancement Technique for Image Compositing

www.eyemaginary.com/publications

Nonlinear Multiresolution Image **Blending**

Mark Grundland • Rahul Vohra • Gareth P. Williams • Neil A. Dodgson Computer Laboratory, University of Cambridge, United Kingdom

A Detail Enhancement Technique for Image Compositing

www.eyemaginary.com/publications

UNIVERSITY OF CAMBRIDGE COMPUTER LABORATORY

Tools for Visual Expression

- Stylized image representation (2005)
 - Non-photorealistic image compression and interpolation
- Color to grayscale conversion (2005)
 - Fast decolorization by rendering color contrasts in grayscale
- Color transfer (2005)
 - Color histogram specification by histogram warping
- Color correction (2005)
 - Image recoloring by finding and replacing color gradients
- Contrast adjustment (TBA)
 - Interactive contrast enhancement by contrast brushes
 - Image compositing (2006)
 - Image blending by preserving of contrast, color, and salience

www.eyemaginary.com/publications

20% Sunrise

40% Couple

Contrast Preserving Image Blending

Color Preserving Image Blending

Salience Preserving Image Blending

Quadratic Image Blending

Quartic Image Blending

Selection Image Blending

Composite Photography:

31 Members of the Academy of Sciences49 Students at Smith CollegeComposite portraits published in the journal Science in 1885-1886

Compositing Techniques:

Image Cloning (Cut-and-Paste)

- Occluded opaque objects: images placed on top of each other
- Example: Image stitching
- Accurate image mattes
- Simple image blending

Image Mixing (Cut-and-Merge)

- Superimposed translucent objects: images combined with each other
- Example: Cross dissolve
- Simple image mattes
- Perceptual image blending

Traditional Photomontage by Jerry Uelsmann

Compositing Goals

Enable the artist to control the aesthetic appearance of the composite without the need to individually manipulate its components or their opacities

- Image compositing: (see the paper)
 - Multiple independent images with variable opacities
- **Cross dissolve: (see the presentation)**
 - Two independent images with constant opacities
- Image stitching:
 - Two independent images with binary opacities
- Image fusion:
 - Multiple dependent images with unknown opacities

Compositing Representations

• Pixel values

- Alpha channel (Smith & Catmull, 1977)
- Blending modes (Porter & Duff, 1984)
- Optimal image stitching (Milgram, 1977)

Laplacian pyramids

Multiresolution splines (Burt & Adelson, 1983)

• Wavelet decompositions

- Wavelet image stitching (Hsu & Wu, 1996)
- Optimal wavelet image stitching (Su, Hwang, & Cheng, 2001)
- Gradient domain representations
 - Poisson image editing (Perez, Gangnet, & Blake, 2003)
 - Interactive digital photomontage (Agarwala et al., 2004)
 - Optimal gradient domain image stitching (Zomet et al., 2006)

Blending by Linear Interpolation

- Linear cross dissolve of A and B, with constant opacity $0 \le w \le 1$
- Linear averaging reduces variation: $\sigma_{c} \leq w\sigma_{A} + (1 w)\sigma_{B}$
 - A nondegenerate linear combination of bounded, identically distributed signals, with nonzero mean, can not simultaneously maintain both their expected intensity μ and variation σ
- Linear blending averages coinciding pixels of different images: variation loss in the dynamic range reduces image contrast
- Linear smoothing averages adjacent pixels of the same image: variation loss in the frequency domain reduces image sharpness

Standard Linear Gaussian Smoothing

Our Color Preserving Gaussian Smoothing

Compositing Operators

• Mathematical models:

- Linear weighted mean
 - Results in undesirable contrast loss (emphasizes gray)
- Signed weighted power mean
 - User controlled contrast enhancement (emphasizes details)
- Maximal absolute magnitude selection
 - Results in undesirable contrast gain (emphasizes noise)

Physical Models:

- Absorption of light
 - Results in undesirable darkening (emphasizes black)
- Emission of light
 - Results in undesirable brightening (emphasizes white)
- Mixture of pigments
 - Results undefined if pigment parameters are not available

Redefining Linear Interpolation

C = wA + (1 - w)B

- Operators: \oplus and \otimes
 - Detail preserving image compositing
 - Generalized means: enhances varied details over flat colors
 - Color preserving image compositing
 - Vector algebra: emphasizes vivid colors over shades of gray

Result: C'

- Contrast preserving image compositing
 - Statistical analysis: recovers contrast lost due to averaging

• Weights: w'

- Salience preserving image compositing
 - Information theory: keeps what is deemed most informative

Standard Linear Image Blending

Detail Preserving Image Blending

Detail Preserving Blending

 $\mathbf{C} = \left\langle \mathbf{w} \left\langle \mathbf{A} \right\rangle^{\rho} + (1 - \mathbf{w}) \left\langle \mathbf{B} \right\rangle^{\rho} \right\rangle^{1/\rho} \text{ for } \left\langle \mathbf{X} \right\rangle^{\rho} = \text{sign}(\mathbf{X}) \left| \mathbf{X} \right|^{\rho}$

- **Problem:** Linear blending obliterates fine details
- Model: Combine image values using a signed weighted power mean
- Solution: Emphasize variation over uniformity when compositing a heterogeneous image region with a homogenous image region
- Parameter ρ : User control over the degree of detail enhancement
- Advantage: Simple, efficient and continuous compositing technique to balance the effects of linear averaging and coefficient selection
- Disadvantage: May exaggerate image noise along with image detail

Signed Weighted Power Mean

$$\mathbf{C} = \left\langle \mathbf{w} \left\langle \mathbf{A} \right\rangle^{\rho} + (1 - \mathbf{w}) \left\langle \mathbf{B} \right\rangle^{\rho} \right\rangle^{1/\rho} \text{ for } \left\langle \mathbf{X} \right\rangle^{\rho} = \text{sign}(\mathbf{X}) \left| \mathbf{X} \right|^{\rho}$$

- Intermediate Value: Bounded contrast
 - For $0 \le \rho \le \infty$: min(A,B) $\le C \le max(A,B)$
- Geometric Mean: Minimal contrast
 - For $\rho \rightarrow 0$: $\mathbf{C} = \frac{1}{2} (\operatorname{sign}(\mathbf{A}) + \operatorname{sign}(\mathbf{B})) |\mathbf{A}|^{w} |\mathbf{B}|^{1-w}$
- Linear Mean: Reduced contrast
 - For $\rho = 1$: C = wA + (1 w)B
- Power Mean: Enhanced contrast
 - For $\rho \in \mathbb{N}$ odd: $\mathbf{C} = \sqrt[\rho]{\mathbf{w}}\mathbf{A}^{\rho} + (1-\mathbf{w})\mathbf{B}^{\rho}$
- Coefficient Selection: Maximal contrast
 - For $\rho \rightarrow \infty$: C = A when $|A| \ge |B|$ or C = B when $|B| \ge |A|$

0.5

10.5

Signed Weighted Power Mean

ρ = **1.0**

ρ = **4.0**

Contrast Preserving ρ = 0.5 Nonlinear Cross Dissolve

ρ = 1.0 Linear Cross Dissolve

HH

VHHIDH

ρ = 2.0 Nonlinear Cross Dissolve

ρ = 4.0 Nonlinear Cross Dissolve

ρ = ∞ Selection Cross Dissolve

Contrast Preserving Cross Dissolve

ρ = 0.5 Nonlinear Cross Dissolve

ρ = 1.0 Linear Cross Dissolve

ρ = 2.0 Nonlinear Cross Dissolve

ρ = 4.0 Nonlinear Cross Dissolve

ρ = ∞ Selection Cross Dissolve

Contrast Preserving Cross Dissolve

Church

Forest

Square Root Image Blending: $\rho = 0.5$

Linear Image Blending: $\rho = 1.0$

Quadratic Image Blending: ρ = 2.0

Quartic Image Blending: ρ = 4.0

Selection Image Blending: $\rho = \infty$

Color Preserving Image Blending

Contrast Preserving Image Blending

Salience Preserving Image Blending

Questions?

