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Abstract. We investigate the use of quasicrystals in image sampling. Quasicrystals pro-
duce space-filling, non-periodic point sets that are uniformly discrete and relatively dense,
thereby ensuring the sample sites are evenly spread out throughout the sampled image.
Their self-similar structure can be attractive for creating sampling patterns endowed with
a decorative symmetry. We present a brief general overview of the algebraic theory of cut-
and-project quasicrystals based on the geometry of the golden ratio. To assess the practical
utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive
image sampling strategies on photorealistic image reconstruction and non-photorealistic im-
age rendering used in multiresolution image representations. For computer visualization of
point sets used in image sampling, we introduce a mosaic rendering technique.

Key words: Computer graphics; image sampling; image representation; cut-and-project
quasicrystal; non-periodic tiling; golden ratio; mosaic rendering.
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1 Introduction

Non-periodic tilings have emerged as an important mathematical tool in a variety of computer
graphics applications [27]. They have proven especially useful in the design of sampling algo-
rithms, where they serve to direct the spatial distribution of rendering primitives by enforcing
spatial uniformity while precluding regular repetition. Recently, Wang tilings [3, 19, 23, 24, 25],
Penrose tilings [37], Socolar tilings [38] and polyominoes [39] have been used to generate point
sets for non-periodic sampling. In one of the earliest applications of non-periodic tilings in com-
puter graphics, Penrose tilings [12, 14, 44] were employed by Rangel-Mondragon and Abas [42]
in the design of decorative patterns inspired by Islamic art. They had effectively reinvented
the medieval trade secrets of the craftsmen of fifteenth century Islamic mosques [28] who cre-
ated by hand highly intricate mosaics closely resembling quasicrystal tilings only discovered by
modern science in the late twentieth century. Wang tilings [12, 14] were first introduced by
Stam [48] in order to enable wave texture patches to cover water surfaces of arbitrary size with-
out the appearance of regularly repeating artifacts. Further computer graphics applications of
non-periodic tilings include texture mapping and synthesis [3, 23, 24, 25, 48, 49], photorealistic
rendering using environmental maps [24, 37], and non-photorealistic rendering using stippling
[23, 24]. For computer graphics applications, non-periodic tilings have usually been generated by
geometric constructs, such as matching rules and hierarchical substitution [11, 14]. In this work,
we present the cut-and-project method of generating quasicrystals as an alternative algebraic
approach to the production of non-periodic tilings and point sets (Figure 1). This algebraic ap-
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Point set Voronoi diagram

Delaunay graph Delaunay triangulation

Figure 1. Quasicrystal tilings produced using spatial proximity graphs. In these visualizations, a non-
periodic, rotationally symmetric point set (top left) is depicted as a planar tiling induced by a Voronoi
diagram (top right), a Delaunay graph (bottom left), and a Delaunay triangulation (bottom right). This
set of 1035 points comprises a cut-and-project quasicrystal derived from the standard root lattice of
the non-crystallographic Coxeter group H2. Its viewing window is a square centered at the origin with
radius 1, while its acceptance window is a decagon centered at the origin with radius τ5 + τ3, where τ

is the golden ratio. The visualization of the quasicrystal tilings reveals some remarkable properties. It is
well known that quasicrystals can exhibit five and ten fold rotational symmetry, an impossible feat for
any periodic tiling. Recently, it has been shown analytically that a quasicrystal Delaunay graph can yield
a non-periodic tiling with four distinct tile shapes [29]. As illustrated by this visualization, a Delaunay
triangulation of a cut-and-project quasicrystal can yield a non-periodic tiling with just three distinct tile
shapes.
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proach has the advantages of being straightforward to implement, easy to calculate, and readily
amenable to rigorous mathematical analysis. Moreover, it may be directly extended to higher
dimensions as well as adaptive sampling applications, although this is outside the scope of our
present work. We choose to base our method on the algebra of the golden ratio τ = 1

2(1 +
√

5),
as its geometrical properties have been previously successfully exploited in computer graphics
in the context of spatial sampling [37] and color quantization [33] techniques that rely on the
Fibonacci number system. For an introduction to the theory of quasicrystals, consult Senechal’s
comprehensive textbook [44], while a more advanced treatment of the cut-and-project method
may be found in surveys by Patera [40] as well as Chen, Moody, and Patera [2].

In the evaluation of the effectiveness of quasicrystals as a non-adaptive image sampling strat-
egy, our work is motivated by the use of image sampling in multiresolution image representation
and progressive image rendering. In particular, we base our experimental investigations on
our experience with the development of a point-based rendering approach to multiresolution
image representation for digital photography [15, 16] based on scattered data interpolation tech-
niques [1], which has been shown to support a secure and compact image encoding suitable for
both photorealistic image reconstruction and non-photorealistic image rendering. A thorough
discussion of the standard image sampling strategies can be found in Glassner’s textbook [10].
Their effectiveness has been extensively investigated for use in photorealistic computer graphics
applications [47], such as Monte Carlo integration in 3D ray tracing. For non-adaptive sampling,
the key trade-off is between aliasing and noise, as exemplified by the regular structure of periodic
sampling using a square grid and the irregular clustering of random sampling using a uniform
distribution. The classic compromise strategies are jittered sampling [4, 6, 22], which disrupts
the regularity of periodic sampling by randomly perturbing the sample sites, and quasirandom
sampling [41], which avoids the irregularity of random sampling by ensuring a consistent density
of sampling is maintained. In our experiments, we demonstrate that quasicrystal sampling can
permit more accurate photorealistic image reconstruction than either standard jittered sam-
pling or standard quasirandom sampling. For photorealistic image reconstruction [10], the ideal
strategy is generally considered to be the Poisson disk distribution [4, 6], random point sets
conditioned on a minimum distance between the points, while for non-photorealistic image ren-
dering [5, 17, 18, 20, 43], a popular strategy relies on centroidal Voronoi diagrams [7], optimized
point sets with every point placed at the centroid of its Voronoi polygon. As both of these sam-
pling strategies prove time consuming to compute exactly, a variety of approximation techniques
have been proposed to produce sampling patterns that have similar properties in the frequency
domain, in particular those that exhibit a blue noise Fourier power spectrum characteristic of a
Poisson disk distribution. Historically, blue noise sampling strategies relied on slow, trial and er-
ror, stochastic procedures involving dart throwing algorithms that approximate the Poisson disk
distribution by rejecting prospective locations for new sample sites whenever they are deemed
to be too close to the preceding samples [4, 6, 30, 32]. Improved performance of blue noise
sampling can be obtained through the use of efficient geometric data structures [8, 9, 21, 51]
and parallel processing GPU hardware [50]. Alternatively, one can readily generate a blue noise
sampling pattern using a non-periodic tiling composed of a suitable set of tiles, where each
tile contains a precomputed optimal arrangement of sample sites [3, 19, 23, 24, 25, 37, 39]. A
detailed evaluation of the spectral properties of various blue noise sampling algorithms can be
found in the survey by Lagae and Dutre [26]. In practical applications, it can often be quite
difficult to visually distinguish between renditions produced by blue noise sampling patterns
generated using different algorithms. Hence, for the purpose of our evaluation, we relied on
farthest point sampling [9] since in previous work we have shown this blue noise sampling tech-
nique to be highly suitable for multiresolution image representation [16]. In general, blue noise
sampling algorithms tend to have higher requirements for either computational processing, data
storage, or implementation complexity than simpler sampling strategies, such as quasicrystal
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sampling. Naturally, simpler sampling strategies cannot replicate all of the desirable qualities
of blue noise sampling. Nevertheless, as demonstrated by our evaluation, quasicrystal sampling
is shown to be proficient at supporting a uniform sampling density, centroidal Voronoi regions,
accurate image reconstruction, and progressive image rendering, despite having only a small
number of local sampling configurations arranged in an anisotropic manner incompatible with
a blue noise Fourier power spectrum. Hence, as a potential alternative to periodic sampling in
image representation, sampling using cut-and-project quasicrystals can deterministically guar-
antee minimum and maximum distances between nearest neighbors in a uniformly space-filling
sampling pattern without the overhead of geometric data structures or tiling lookup tables for
tracking their placement.

2 Method

While a periodic point set is characterized by its translational symmetries, a non-periodic point
set admits no translational symmetries. For use in image sampling, we focus on non-periodic
point sets that are determined by their inflation symmetries. In such a non-periodic point
set, a fixed configuration of sample sites can be repeated at different scales to generate a self-
similar pattern. The simplest way of producing non-periodic point sets is to use hierarchical
substitution tilings [13, 14]. For instance, hierarchical substitution can be readily applied to the
famous Penrose tiling [12, 14, 37, 42, 44]. The strategy starts with a small set of polygonal tiles.
The tile set is carefully designed so that each tile can be decomposed by geometric subdivision
into smaller instances of itself and the other tiles. A hierarchy is formed whereby an existing
tile becomes the parent of new child tiles. Starting with an initial configuration of the tiles
scaled to cover the image plane, the tiling is refined through an iterative process of deflation
and substitution. The tile vertices or centroids are used to derive a point set from the tiling.
The choice of the initial configuration appears mirrored in the global structure and symmetry
properties of the tiling and the resulting point set.

We focus on a more general class of non-periodic point sets corresponding to cut-and-project
quasicrystals [2, 40, 44]. The cut-and-project method was originally introduced by Meyer [31]
in the context of harmonic analysis and it was later adapted for generating quasicrystals by
Moody and Patera [34]. The Fibonacci chain and Penrose tilings can be regarded as special
cases of such quasicrystals. In our work, we employ the standard root lattice of the non-
crystallographic Coxeter group H2, a group of reflections taken from Lie algebra theory. This
approach to quasicrystals can be used to relate discrete, non-periodic point sets and tilings
(Figure 1) with the level sets of continuous, non-periodic functions (Figure 2). To produce
a 2D cut-and-project quasicrystal, a 4D periodic lattice is projected on a suitable 2D plane
that is irrationally oriented with respect to the lattice. Using this method, we obtain a dense
subspace consisting of integer coefficient linear combinations of the vertices of a regular decagon
centered on the origin, which are the roots of the non-crystallographic Coxeter group H2. This
construction ensures that the coordinates of all its elements can be expressed using only integers
and an irrational number, the golden ratio. To obtain a finite 2D quasicrystal, we select only
those elements of the dense subspace contained in a specified bounded region, called the viewing
window, that are mapped by an everywhere discontinuous algebraic transformation, called the
star map, to another specified bounded region, called the acceptance window. Through the
gradual expansion of a rotationally symmetric acceptance window, a quasicrystal sequence can be
uniquely ordered by radial distance and angle from then center of the acceptance window in order
to produce a uniformly space-filling point set in the viewing window. As an important practical
consequence, this property directly enables progressive sampling. It could also potentially enable
adaptive sampling by varying the radius of the acceptance window according to an application
dependent importance map defined for the viewing window. A 2D quasicrystal can also be
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Phase function contour map Phase function level set

Quasicrystal phase function: f(z) =
∑9

j=0 exp
(
2πi(ζj) · (2τ4z)

)
defined

for regular decagon vertices ζj = exp
(

2πi
10 j

)
and golden ratio τ = 1

2 (1 +
√

5)

with dot product u · v = 1
2 (uv + uv) and complex conjugate u1 + u2i = u1 − u2i.

Figure 2. Quasicrystal construction using a continuous quasicrystal phase function. Observe that a
quasicrystal point set is contained within a level set of a continuous phase function f : C → R defined
in the complex plane [35]. This continuous phase function is formulated using the roots of the non-
crystallographic Coxeter group H2, which comprise the vertices ζj of a regular decagon. To generate a
quasicrystal point set, start by placing the first point at the origin. For each newly placed point x ∈ C,
consider the candidate points z = x + ζj with j ∈ {0, . . . , 9}, which are the vertices of a regular decagon
centered at x, and only accept the candidates for which the phase function f(z) ≥ T exceeds a desired
threshold T that controls the density of the resulting point set.

expressed as a subset of a Cartesian product of two 1D quasicrystals, in accordance with the
fact that the points that lie on any straight line through a 2D quasicrystal correspond to some
linearly transformed 1D quasicrystal. Therefore, in practice, a 2D quasicrystal (Figure 4) can
be generated from a 2D lattice of 1D quasicrystals. Meanwhile, a 1D quasicrystal (Figure 3) is
produced by taking a strip of a 2D periodic lattice, having finite width and irrational slope, and
orthogonally projecting its points onto a line of the same slope. The resulting 1D quasicrystal is
composed of at most three distinct tiles. It is easy to generate 1D quasicrystal points using an
iterative numerical algorithm. Alternatively, it is possible to exploit the self-similar structure of
a 1D quasicrystal, viewing it as the fixed point of a set of substitution rules that act recursively
on a finite alphabet of possible tile arrangements.

Based on the geometry and algebra of the golden ratio, these quasicrystal point sets exhibit
some remarkable properties. They display pentagonal and decagonal rotational symmetries,
which cannot occur in any periodic point set. Originally, the theory of quasicrystals was moti-
vated by solid state physics as a model of the non-periodic geometric structures that describe the
symmetries of a new kind of long-range atomic order discovered in certain metallic alloys [46].
While translational symmetries define periodic crystals, inflation symmetries can be used to de-
scribe quasicrystals based on algebraic irrational numbers, such as the golden ratio. When the
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Cut-and-project principle:
To generate a non-periodic point set in an n-dimensional
space, take a region of a periodic point set in a
2n-dimensional space and orthogonally project it onto an
irrationally oriented n-dimensional subspace. For the re-
sulting point set in n-dimensional space to be discrete
rather than dense, the region of 2n-dimensional space un-
dergoing projection, typically a cylinder, must be bounded
along the directions of projection.

Ruler and graph paper construction:
Start with the 2D integer lattice. Consider three parallel
lines with slope τ , the inner one passing through the origin
(0, 0). The outer lines serve to cut out a strip of the integer
lattice, while the inner line provides the central axis. The
width of the strip defines the acceptance window Ω = [c, d),
while the visible length of the strip defines the viewing
window V = [l, r]. Observe that when the lattice points
contained in the strip are orthogonally projected onto the
central axis, the resulting 1D sequence ΣΩ is non-periodic
if and only if the slope τ of the strip is irrational.

Golden ratio:
τ = 1

2

(
1 +

√
5
) ≈ 1.618 and its conjugate τ ′ = 1

2

(
1 −√

5
) ≈ −0.618 are the solutions of x2 = x + 1.

Golden integers:
Z[τ ] = {a + bτ | a, b ∈ Z} is an Euclidean domain that is dense in R.

Conjugate golden integers:
Z[τ ′] = {a + bτ ′ | a, b ∈ Z} is the set of conjugates (a+ bτ)′ = a+ bτ ′ = a− bτ−1, where τ ′ + τ = 1 and τ ′τ = −1.

Cut-and-project 1D quasicrystals:

ΣΩ =
{

a + bτ ∈ Z[τ ]
∣∣∣ a + bτ ′ ∈ Ω ∩ Z[τ ′]

}
quasicrystal is specified by a bounded acceptance window Ω = [c, d).

Duality of 1D quasicrystals:
xk ∈ (ΣΩ ∩ V ) ⊂ Z[τ ] restricted to the bounded viewing interval V = [l, r] implies a dual quasicrystal
x′

k ∈ (Σ′
V ∩ Ω) ⊂ Z[τ ′] contained in the bounded acceptance interval Ω = [c, d).

Translation and scaling of 1D quasicrystals:
Σ[c,d) + λ = Σ[c+λ′,d+λ′) for λ ∈ Z[τ ] and ξ′Σ[c,d) = Σ[ξc,ξd) for ξ = τk and k ∈ Z.

Stepping function for 1D quasicrystals:
Assume a standard acceptance window Ω = [c, d) such that 0 ∈ Ω and d−c ∈ [1, τ)
and observe that a 1D quasicrystal is an arrangement of just three possible tiles.

x′
k+1 =




x′
k + 1 if x′

k ∈ [c, d − 1) ⇒ xk+1 − xk = 1 (small tile)
x′

k + 1 + τ ′ if x′
k ∈ [d − 1, c − τ ′) ⇒ xk+1 − xk = 1 + τ (large tile)

x′
k + τ ′ if x′

k ∈ [c − τ ′, d) ⇒ xk+1 − xk = τ (medium tile) �

�

x

σ(x)

c d−1 c−τ ′ d

d+τ ′

c+1

d

Iterative construction of 1D quasicrystals:
For a standard acceptance window Ω = [c, d), containing the origin c ≤ 0 < d inside an interval of suitable
width 1 ≤ d− c < τ , a quasicrystal sequence xk ∈ ΣΩ is generated by successively applying the stepping function
σ : Ω → Ω to obtain the conjugate of the right neighbor x′

k+1 = σ(x′
k) or the inverse stepping function σ−1 : Ω → Ω

to obtain the conjugate of the left neighbor x′
k−1 = σ−1(x′

k).

Stepping algorithm for 1D quasicrystals:

1. Translate and scale the desired acceptance Ω and viewing V intervals to make the acceptance window Ω
into a standard acceptance window.

2. Starting from x0 = 0, apply the stepping function x′
k+1 = σ(x′

k) and its inverse x′
k−1 = σ−1(x′

k) to generate
the consecutive quasicrystal points until both edges of the translated and scaled viewing window are reached.

3. Reverse the translation and scaling to obtain the desired quasicrystal ΣΩ.

Figure 3. Algorithm for 1D cut-and-project quasicrystals.
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Quasilattice principle:
For a quasicrystal point set in n-dimensional space, the points
that lie on any straight line can be mapped by an affine transfor-
mation to a valid quasicrystal sequence in 1-dimensional space.

Star map:
(xe1 + ye2)

∗ = x′e∗1 +y′e∗2 semilinear map acts on golden integers
x, y ∈ Z[τ ] and basis vectors e1, e2 ∈ R

2.

Star basis:
e1 = (0, 1) and e2 = (− 1

2
τ, 1

2

√
3 − τ) are mapped by the star map

to e∗1 = (0, 1) and e∗2 = ( 1
2
(τ − 1),− 1

2

√
2 + τ), as defined by the

standard basis of the non-crystallographic Coxeter group H2.

Golden integer lattice:

M = Z[τ ]e1 + Z[τ ]e2 =
{

(a1 + b1τ)e1 + (a2 + b2τ)e2

∣∣∣ a1, b1, a2, b2 ∈ Z

}
is a Z[τ ]-module that is dense in R

2.

Star mapped golden integer lattice:

M∗ = Z[τ ′]e∗1 + Z[τ ′]e∗1 =
{

a1 + b1τ
′)e∗1 + (a2 + b2τ

′)e∗1
∣∣∣ a1, b1, a2, b2 ∈ Z

}
is determined by the star map.

Cut-and-project 2D quasicrystals:

ΣΩ =
{

xe1 + ye2 ∈ M
∣∣∣ x′e∗1 + y′e∗2 ∈ Ω∩M∗

}
quasicrystal is specified by a bounded acceptance window Ω.

Duality of 2D quasicrystals:
xe1 + ye2 ∈ (ΣΩ ∩ V ) ⊂ M restricted to the bounded viewing window region V implies a dual quasicrystal
x′e∗1 + y′e∗2 ∈ (Σ∗

V ∩ Ω) ⊂ M∗ contained in the bounded acceptance window region Ω.

Set laws of 2D quasicrystals:
ΣΩ1∩Ω2 = ΣΩ1 ∩ ΣΩ2 and ΣΩ1∪Ω2 = ΣΩ1 ∪ ΣΩ2 as well as ΣΩ1 ⊆ ΣΩ2 whenever Ω1 ⊆ Ω2.

Translation and scaling of 2D quasicrystals:
ΣΩ + λ = ΣΩ+λ∗ for λ ∈ M and ξ′ΣΩ = ΣξΩ for ξ = τk and any k ∈ Z .

Inflation symmetry of 2D quasicrystals:
τ2 (ΣΩ − z) + z ⊂ ΣΩ implies that every point z ∈ ΣΩ is a center of inflation symmetry, if Ω is a convex set.

Quasilattice for 2D quasicrystals:
ΣΓ1e∗1+Γ2e∗2 = ΣΓ1e1+ΣΓ2e2 is a lattice of 1D quasicrystals ΣΓ1 and ΣΓ2 with acceptance windows Γ1 and Γ2.

Quasilattice algorithm for 2D quasicrystals:

1. Find a quasilattice viewing window W = W1e1 + W2e2 that contains the desired quasicrystal viewing
window V ⊆ W . The quasilattice viewing window W is a parallelogram where the viewing intervals
satisfy x ∈ W1 and y ∈ W2 for all xe1 + ye2 ∈ V ∩ M .

2. Find a quasilattice acceptance window Γ = Γ1e
∗
1 + Γ2e

∗
2 that contains the desired quasicrystal accep-

tance window Ω ⊆ Γ . The quasilattice acceptance window Γ is a parallelogram where the acceptance
intervals satisfy x′ ∈ Γ1 and y′ ∈ Γ2 for all x′e∗1 + y′e∗2 ∈ Ω ∩ M∗.

3. Generate the 1D quasicrystals ΣΓ1 ∩ W1 and ΣΓ2 ∩ W2 according to viewing intervals W1 and W2 as
well as the acceptance intervals Γ1 and Γ2.

4. Generate the 2D quasilattice ΣΓ∩W = ΣΓ1e∗1+Γ2e∗2 ∩W = (ΣΓ1 ∩ W1) e1 +(ΣΓ2 ∩ W2) e2 according to
quasilattice viewing window W and quasilattice acceptance window Γ from the coordinates supplied
by the 1D quasicrystals ΣΓ1 ∩ W1 and ΣΓ2 ∩ W2.

5. Discard all quasilattice points xe1 + ye2 ∈ ΣΓ ∩ W that do not belong to the desired quasicrystal
xe1 + ye2 /∈ ΣΩ ∩ V because either they do not belong to the desired quasicrystal viewing window
xe1 + ye2 /∈ V or acceptance window x′e∗1 + y′e∗2 /∈ Ω.

Figure 4. Algorithm for 2D cut-and-project quasicrystals.
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0 10 20 30 40 50

Evolution of a 1D quasicrystal point set ΣΩ from Ω = [0, 1) to Ω = [0, τ).

Evolution of a Delaunay graph of a 2D quasicrystal, where 10 new sites are added at each generation.

Evolution of a Delaunay triangulation of a 2D quasicrystal, where the acceptance window is a decagon centered

at the origin that is expanded by a factor of τ , from radius τ4 + τ2 on the left and to radius τ5 + τ3 on the right.

Figure 5. Evolution of cut-and-project quasicrystals reveals their self-similar structure.
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acceptance window is a convex region, every point of a quasicrystal can be viewed as a center
of inflation symmetry. A quasicrystal can have no translational symmetries and no periodic
subsets. Moreover, it can be partitioned into subsets such that each subset forms a valid qua-
sicrystal. Consider the local configurations of tiles in an infinite quasicrystal mosaic formed by a
Voronoi diagram or a Delaunay triangulation. According to the repetitivity property implied by
suitable regularity conditions, each fragment is repeated infinitely many times in the mosaic. Yet
no single fragment is ever sufficient to determine the structure of the whole mosaic because every
finite fragment, no matter its size, occurs in an uncountable infinity of nonequivalent mosaics.
Furthermore, according to the Delaunay point set property, quasicrystals are both uniformly
discrete and relatively dense, creating space-filling tilings.

As Delaunay point sets, quasicrystals are particularly well suited to image sampling. They
enforce both a minimal and a maximal distance between each sample site and its closest neigh-
boring site. In quasicrystal sampling, we rely on the golden ratio to ensure symmetry and self
similarity, which are generally absent when other than algebraic irrational numbers are used
with the cut-and-project method to produce non-periodic point sets. By taking this approach,
we can endow a rendition with a decorative symmetry, which viewers may find attractive in
the context of non-photorealistic rendering. Compared with the regular grids of periodic point
sets, the self-similar, space-filling structure of non-periodic point sets (Figure 5) appears less
monotonous, especially during progressive image rendering. In effect, the geometric structure
of quasicrystal sampling eliminates the possibility of aliasing artifacts regularly repeating in the
rendition. However, in quasicrystal sampling, fixed local configurations of sample sites can be
repeated at multiple places and orientations, albeit not at regular intervals, with the potential
to yield some recurring, anisotropic aliasing artifacts. Although we did do so in this work, for
photorealistic image reconstruction, it is preferable to avoid inducing global rotational symmetry
in the sampling pattern, which is done by ensuring the viewing window does not contain the
origin when the acceptance window is symmetric with respect to the origin.

3 Evaluation

We now present a qualitative evaluation of quasicrystal sampling in the context of non-adaptive
sampling strategies for use in image representation. In this application, non-adaptive sampling
strategies serve as building blocks for interactive sampling, adaptive sampling, and importance
sampling techniques. In effect, they dictate the placement of sample sites in image regions sam-
pled at a uniform resolution. For this purpose, a non-adaptive sampling strategy should satisfy
several image representation objectives. The sample sites should be distributed in a manner that
fairly and accurately represents the image. The sampling pattern should be evenly space-filling
in order to enable progressive image rendering. Without any preconceptions about the distribu-
tion of visually salient features in the image, the same amount of information should be devoted
to capturing each part of the image. Hence, the number of sample sites placed in any region of
the image should be proportional to its area, so the sampling density remains the same through-
out the image. Both globally and locally, the placement of sample sites should be uniform and
isotropic while still allowing for a variety of different sample site configurations. To prevent
aliasing, the sample sites should not be arranged into fixed configurations that visibly repeat
locally or globally. To prevent clustering, a minimum distance between sample sites should be
maintained throughout the image. Assuming that the correlation between pixels decreases with
distance, a sample site should be placed close to the centroid of its Voronoi polygon to enable its
sampled color to be most representative of its region of influence when the image is reconstructed
using a local interpolation technique. Naturally, the relative importance of these considerations
depends on the requirements of a particular application. We have formulated these priorities
based on our previous work on a multiresolution image representation [16] designed to simultane-
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ously support both photorealistic image reconstruction and non-photorealistic image rendering.
While previous qualitative surveys [10] and quantitative comparisons [47] of image sampling
have focused on applications in photorealistic image reconstruction, they did not cover qua-
sicrystal sampling and farthest point sampling. Furthermore, their tests were not carried out on
an image representation of digital photographs and they did not specifically address the needs
of non-photorealistic image rendering.

We compared quasicrystal sampling to a number of standard non-adaptive image sampling
strategies [10], reflecting different approaches to the inherent trade-off between aliasing and
noise. For our evaluation, we chose approaches that exemplify divergent aims in sampling.
For each approach, we selected a representative implementation. As noted below, alternative
implementations are certainly possible but they are likely to produce similar qualitative results.
From the deterministic to the stochastic, we tested a range of sampling strategies (Figure 7):

1. Periodic sampling [36] aims for global regularity. Our implementation relies on a square
lattice refined in scan line order. An alternative implementation could use a hexagonal
lattice, the densest periodic lattice in the plane.

2. Quasicrystal sampling [44] aims for local regularity. Our implementation relies on the
cut-and-project method applied using the golden ratio. An alternative implementation
could use a Penrose tiling produced using a hierarchical substitution algorithm.

3. Farthest point sampling [9] aims for spatial uniformity. Our implementation relies on
the principle of progressively sampling at the point of least information, placing each new
sample site at the point farthest from any preceding sample site, which is necessarily a
vertex of the Voronoi diagram of the preceding sample sites. An alternative implementation
could position sample sites to conform to a centroidal Voronoi diagram so that each sample
site is placed at the centroid of its Voronoi polygon.

4. Jittered sampling [22] aims for local variability. Our implementation relies on a full
random displacement of a square lattice refined in scan line order. An alternative imple-
mentation could use a partial random displacement of a hexagonal lattice.

5. Quasirandom sampling [41] aims for low discrepancy. Our implementation relies on the
Halton sequence. An alternative implementation could use a Sobol sequence.

6. Random sampling [10] aims for global variability. Our implementation relies on a uni-
form distribution. An alternative implementation could use a random walk on a unit
square with toroidal boundary conditions.

To perform a qualitative evaluation of the image sampling strategies, we applied a number
of computer visualization techniques. For each non-adaptive sampling strategy, we visualize
its sample sites (Figure 7) in the spatial domain using a Voronoi diagram (Figure 8) and in
the frequency domain using a Fourier power spectrum (Figure 9). We examined the visual
effects of applying the image sampling strategies in the context of various image rendering
techniques that are used in multiresolution image representations. For photorealistic image
reconstruction [1], we tested the accuracy of Shepard’s interpolation (Figure 13), an inverse
distance weighted interpolation method that applies the Voronoi diagram to determine the color
of each pixel based on its four nearest sample sites, as well as Gouraud shading (Figure 14),
a piecewise linear interpolation method that applies the Delaunay triangulation to determine
the color of each pixel based on its three surrounding sample sites. To quantitatively assess
the results of these widely used local interpolation techniques, we relied on the peak signal-
to-noise ratio (PSNR). This standard image fidelity metric [45] estimates the accuracy of the
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Figure 6. Techniques for visualizing the spatial configuration of sample sites: Voronoi diagram (far
left), Delaunay triangulation (center left), Delaunay star shapes (center right), and our mosaic rendering
technique (far right).

rendition according to the negative logarithm of the mean squared error between the rendered
and actual RGB color values of the pixels. Hence, higher peak signal-to-noise ratio scores are
considered better. For non-photorealistic image rendering [16], we experimented with a simple
“paint strokes” rendering style (Figure 12), which applies geometric subdivision to the Delaunay
triangulation of the sample sites and then uses linear and nonlinear interpolation to emphasize
the transitions between the sampled colors.

Our mosaic rendering style (Figure 6) offers a new computer visualization tool for evaluating
the spatial properties of point sets, such as the sample sites produced by the various image
sampling strategies. To produce a mosaic rendering, we apply geometric subdivision to the
Delaunay triangulation of the sample sites. The midpoints of the edges of each Delaunay triangle
are joined to form three outer triangles and one inner triangle. Each outer triangle is rendered
with the color sampled at its vertex of the original Delaunay triangle, while the central triangle
is colored black. As each sample site is represented by a star-shaped polygonal tile, the resulting
mosaic appears packed as tightly as possible, with the black central triangles serving as grout
between the tiles. As a sample site’s local neighborhood (Figure 6, far left) comprises the
surrounding sample sites connected to it by edges in the Delaunay triangulation (Figure 6,
center left), the sample site’s mosaic tile (Figure 6, far right) is shaped to reflect the star of its
surrounding Delaunay triangles (Figure 6, center right). For instance, a sample site’s mosaic
tile is a convex or concave polygon according to whether its neighboring sites are arranged in
a convex or concave configuration. As a visualization tool, the advantage of mosaic rendering
is that the layout of the star-shaped mosaic tiles makes the spatial properties of a sampling
strategy easier to see at a glance than the triangles of a Delaunay triangulation or the convex
polygons of a Voronoi diagram. The sizes of the mosaic tiles are indicative of the uniformity of
sampling, as coarsely sampled regions give rise to large tiles and finely sampled regions give rise
to small tiles, making common defects such as clustering, undersampling, and oversampling easy
to detect. The orientations of the mosaic tiles are indicative of the isotropy of sampling, as the
preferred directions of the sampling are revealed in the preferred rotations of the tiles, making
global or local grid structures easy to detect. The shapes of the mosaic tiles are indicative of the
heterogeneity of sampling, as the local configurations of neighboring sites uniquely determine the
tile polygons, making repetitive patterns easy to detect. For instance, farthest point sampling
produces tiles of uniform size and similar shape to create the appearance of a pebble mosaic,
while quasicrystal sampling yields a decorative tiling with just a small set of possible tile shapes.

Our qualitative evaluation of image sampling strategies uses seven criteria (Figure 10) known
to affect the visual quality of photorealistic image reconstruction and non-photorealistic image
rendering [16]:
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1. Accurate reconstruction requires the rendition to faithfully represent the likeness of
the original image. It is a necessary but not sufficient condition of success in both pho-
torealistic and non-photorealistic image rendering. This objective appears to be closely
associated with uniform coverage and centroidal regions. It is assessed by measuring the
peak signal-to-noise ratio for the results of photorealistic image reconstruction (Figure 13
and Figure 14). Its most pronounced effects can also be observed in the results of non-
photorealistic image rendering (Figure 12). When the resolution of sampling is uniform,
periodic sampling yields the most accurate image interpolation (in Figure 14, for the regu-
lar square grid, this takes place when there are 332 = 1089, 652 = 4225, and 1292 = 16641
samples). However, when regions of varying resolution arise during progressive refine-
ment, the accuracy of periodic sampling can substantially deteriorate. Similar behavior
is observed in jittered sampling since it applies random perturbations to a periodic point
set. Farthest point sampling produces image reconstructions that are nearly as accurate
as periodic sampling, but its performance does not diminish during progressive refine-
ment. Intermediate accuracy is offered by quasicrystal sampling, which appears to be
slightly more accurate than quasirandom sampling. The least accurate reconstructions are
produced by jittered and random sampling. Given its popularity in computer graphics
implementations, the poor performance of jittered sampling is rather disappointing. Of
course, the accuracy of jittered sampling can always be made closer to that of periodic
sampling by reducing the amount of random displacement, which risks reintroducing the
aliasing artifacts of periodic sampling. In general, accuracy is improved by uniformity
and reduced by randomness, an effect that can be readily seen as producing tight or loose
image stylization.

2. Progressive refinement requires the sample sites to smoothly fill the available space,
avoiding abrupt changes in appearance as new sample sites are sequentially added to
the rendition. This objective serves to enable a multiresolution image representation to
support progressive rendering of compressed images based on an incremental sampling of
the image data. It is assessed by examining the spatial layout of the sequence of sample sites
(Figure 7). Under ideal circumstances, progressive refinement should yield a smooth curve
for the peak signal-to-noise ratio (Figure 14). The best progressive refinement results are
produced by farthest point sampling and quasicrystal sampling, as these methods maintain
a uniform sampling density by ensuring that new sample sites are placed in the largest
empty spaces between the existing sample sites. Quasirandom sampling proves slightly
less proficient, as it places some sample sites very close together while keeping others
far apart. Random sampling is even less effective due to its tendency to locally cluster
sample sites. The regular grids used in periodic and jittered sampling are not suitable for
smooth progressive refinement, especially when they are refined in scan line order. While
other refinement schemes can be applied to regular grids, such as refinement in random
order, their intrinsic symmetry makes it difficult to smoothly increase the sampling density
throughout the image.

3. Uniform coverage requires the sample sites to be evenly distributed regardless of posi-
tion, avoiding configurations that place sample sites too close or too far from their nearest
neighbors. This objective is assessed using Voronoi diagrams (Figure 8) as well as mosaic
renderings (Figure 11). Its effect determines the sizes of brush strokes in non-photorealistic
image rendering (Figure 12). Uniform coverage is associated with a Fourier power spec-
trum (Figure 9) that displays an empty ring around the central spike, as low frequencies
are attenuated in favor of a threshold frequency corresponding to the most commonly ob-
served nearest neighbor distance between sample sites. Although a blue noise spectrum
can ensure uniform coverage, it is not a necessary condition. When the resolution of sam-
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Figure 7. Non-adaptive sampling strategies: periodic sampling (top left), quasicrystal sampling (top
center), farthest point sampling (top right), jittered sampling (bottom left), quasirandom sampling (bot-
tom center), and random sampling (bottom right). Sampling starts with the dark blue sites and finishes
with the light green sites.

pling is uniform, periodic sampling generates uniform coverage, as its mosaic tiles are all
exactly the same size. However, periodic sampling cannot sustain uniform coverage during
progressive refinement. By design, farthest point sampling maintains uniform coverage at
all times, as its mosaic tiles are all approximately the same size. Quasicrystal sampling
maintains nearly as uniform coverage, as its mosaic tiles are limited to just a few compa-
rable sizes. While quasirandom and jittered sampling strive to uphold a uniform density
of sampling, they nevertheless are less effective at providing uniform coverage, as their
mosaic tiles come in many sizes. In the case of jittered sampling, uniform coverage can be
improved by reducing the amount of random displacement. Random sampling does not
give uniform coverage, as its mosaic tiles exhibit the greatest range of different sizes.

4. Isotropic distribution requires the sample sites to be evenly distributed regardless of
orientation, avoiding configurations that align sample sites along globally or locally pre-
ferred directions. This objective is assessed using Voronoi diagrams (Figure 8) as well as
mosaic renderings (Figure 11). Its effect is to determine the orientations of brush strokes
in non-photorealistic image rendering (Figure 12). An isotropic distribution produces a
Fourier power spectrum (Figure 9) that displays a rotational symmetry around the cen-
tral spike, as the power at each frequency does not depend on its orientation. Although
a blue noise spectrum can ensure isotropic distribution, it is not a necessary condition.
Random sampling is the most isotropic, as its sample sites are both locally and globally
uncorrelated. Farthest point and jittered sampling are nearly as isotropic, as their sample
sites can exhibit slight local alignment. Farthest point samples can appear to be placed in
roughly hexagonal local configurations. Jittered samples can appear to retain some of the
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Figure 8. Voronoi diagrams of image sampling strategies applied to a color spiral test image: peri-
odic sampling (top left), quasicrystal sampling (top center), farthest point sampling (top right), jittered
sampling (bottom left), quasirandom sampling (bottom center), and random sampling (bottom right).

structure of the underlying square grid, as the isotropy of jittered sampling reflects the
amount of random displacement used to generate the sampling. Quasirandom sampling
has intermediate isotropy, as its sample sites can exhibit slight global alignment, which
can be verified in the lack of radial symmetry in its Fourier power spectrum. Periodic
sampling and quasicrystal sampling do not have isotropic distribution since their sample
sites are globally aligned along predetermined axes.

5. Blue noise spectrum requires the sample sites to be distributed similarly to a Poisson
disk distribution, a random point field conditioned on a minimum distance between the
points. According to this objective, for an image sampling strategy to provide effective
antialiasing for image rendering, it should attempt to mimic the idealized distribution of
photoreceptors in the human eye. Usually implying both uniform coverage and isotropic
distribution, a blue noise spectrum is highly desirable in many computer graphics appli-
cations, particularly photorealistic image reconstruction. It is assessed by examining the
Fourier power spectrums of the sampling strategies (Figure 9) for a radially symmetric
profile that concentrates noise in the high frequencies while attenuating the power of the
low frequencies, thereby eliminating the aliasing artifacts associated with low frequency
patterns that can appear distracting to the eye. In effect, a blue noise spectrum exhibits
a disk of low power around the origin, surrounded by roughly constant power at the
higher frequencies. Its effects can be judged according to the amount of aliasing present
in photorealistic image reconstruction (Figure 13) and non-photorealistic image rendering
(Figure 12). Farthest point sampling has a Fourier power spectrum that is closest to a
blue noise spectrum. Jittered sampling attempts to replicate the blue noise spectrum, but
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Figure 9. Fourier power spectrums of image sampling strategies: periodic sampling (top left), qua-
sicrystal sampling (top center), farthest point sampling (top right), jittered sampling (bottom left),
quasirandom sampling (bottom center), and random sampling (bottom right).

it does not clearly exhibit the threshold frequency ripple around the central spike. Quasir-
andom is even less successful because its Fourier power spectrum lacks radial symmetry.
Periodic, quasicrystal, and random sampling have Fourier power spectrums that do not re-
semble the blue noise spectrum. The Fourier power spectrums of periodic and quasicrystal
sampling reflect the spatial structures and directional symmetries of the lattices used to
place the sample sites. On the other hand, the white noise spectrum of random sampling
assigns roughly the same power to all frequencies.

6. Centroidal regions require sample sites to be well centered with respect to their Voronoi
polygons, approximating a centroidal Voronoi diagram. Typically associated with uniform
coverage and accurate reconstruction, this objective is popular in non-photorealistic image
rendering. Sampling strategies, such as periodic sampling, that produce centroidal regions
can still be prone to aliasing artifacts since centroidal regions do not guarantee a blue
noise spectrum. Centroidal regions can be readily assessed using the Voronoi diagrams
(Figure 8). The effects can also be observed in the shapes of tiles in mosaic rendering
(Figure 11) and brush strokes in non-photorealistic image rendering (Figure 12). Periodic
sampling, placing each sample site at the same distance from all of its nearest neighbors,
generates exact centroidal Voronoi regions. Quasicrystal and farthest point sampling pro-
duce approximately centroidal Voronoi regions. To place sample sites close to the center
of their Voronoi polygons, quasicrystal sampling relies on local symmetries while farthest
point sampling relies on nearest neighbor distance. Jittered sampling and quasirandom
sampling have difficulty ensuring centroidal regions because they are less effective at main-
taining a minimal nearest neighbor distance. Finally, random sampling can only produce
centroidal regions by chance.
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Figure 10. Qualitative evaluation of image sampling strategies.

7. Heterogeneous configurations require sample sites to be placed in a variety of different
local arrangements, avoiding regularly or randomly repeating the same sampling patterns.
While this objective is not traditionally a concern in photorealistic image reconstruction,
it helps to prevent non-photorealistic image rendering from appearing too perfect, seem-
ingly mechanical and artificial. For instance, it helps to give a vibrant appearance to
brush stroke rendering. Typically, when sampling strategies yield centroidal regions, they
also tend to produce homogeneous configurations and vice versa, illustrating an apparent
trade-off between these competing objectives. Heterogeneous configurations are assessed
using the Voronoi diagrams (Figure 8) and mosaic renderings (Figure 11). Their effect
is also visible in the arrangement of brush strokes in non-photorealistic image rendering
(Figure 12). Random sampling produces the most heterogeneous local configurations, as
its mosaic tiles exhibit the greatest variety of shapes. Jittered and quasirandom sampling
are nearly as heterogeneous, since their mosaic tiles are almost as widely varied, though
few of them are exceptionally large in size. Quasicrystal and farthest point sampling are
far less heterogeneous. By upholding local symmetries, quasicrystal sampling causes sam-
ple sites to have only a few possible local configurations, resulting in mosaic tiles that
have only a few possible shapes. By upholding nearest neighbor distance, farthest point
sampling causes sample sites to have similar local configurations, resulting in mosaic tiles
that look very much alike, mostly convex and rounded. Based on repetitions of a single
local configuration, periodic sampling is entirely homogeneous.

Our qualitative analysis (Figure 10) indicates that quasicrystal sampling offers a useful com-
promise between the ordered behavior of standard periodic sampling using a regular square
lattice and the disordered behavior of standard Monte Carlo sampling using jittered, quasiran-
dom, or random sampling. Compared with periodic sampling, quasicrystal sampling displays a
greater variety of local sample site configurations resulting in smoother progressive refinement,
although its sampling patterns are somewhat less uniform, leading to lower accuracy of im-
age reconstruction. Compared with jittered, quasirandom, and random sampling, quasicrystal
sampling displays more uniform coverage resulting in better accuracy of image reconstruction,
although its sampling patterns are anisotropic, exhibiting significantly less variety of local sam-
ple site configurations. By virtue of its deterministic construction, quasicrystal sampling does
not suffer from the variability that can affect the results of random sampling, jittered sampling,
and, to a much lesser degree, farthest point sampling. Nevertheless, its lack of a blue noise
power spectrum renders it rather susceptible to aliasing artifacts. Research on quasicrystal
sampling based on the Penrose tiling [37] suggests that it may be possible to partially alleviate
this problem by taking advantage of the symmetries and the repetitions of the local sample site
configurations in order to systematically displace the sample sites in a manner that improves
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the spectral properties of the sampling pattern.
Based on our qualitative evaluation of the various non-adaptive sampling strategies (Fig-

ure 10), we recommend a blue noise sampling strategy, such as farthest point sampling, for gen-
eral use in image representation. In particular, farthest point sampling does not perform poorly
on any of our seven evaluation criteria. Overall, our qualitative evaluation of non-adaptive
sampling strategies is in broad agreement with previous studies, which did not consider qua-
sicrystal sampling. They emphasized the importance of Poisson disk distributions [10] and low
discrepancy distributions [47], which are exemplified in our evaluation by farthest point sam-
pling and quasirandom sampling respectively. Hence, the good overall performance of these two
techniques should come as no surprise. Farthest point sampling performs better than quasir-
andom sampling on six out of the seven evaluation criteria. For the majority of our evaluation
criteria, quasicrystal sampling performs no better than farthest point sampling and no worse
than quasirandom sampling. Nevertheless, from a practical point of view, quasicrystal sampling
is significantly simpler to implement and calculate than farthest point sampling, which relies on
maintaining complex geometric data structures to keep track of the vertices of a Voronoi dia-
gram. This could be an important consideration for imaging applications on mobile devices that
have limited processing and storage capabilities. From a theoretical point of view, the deter-
ministic algebraic construction of quasicrystals renders their sampling patterns particularly well
suited to mathematical analysis. Presenting possibilities for future research, the cut-and-project
method could be adapted for higher dimensional sampling or adaptive sampling applications.

In future work, it would also be interesting to explore the relationship between local sym-
metry and sampling quality. The cut-and-project method can be used to generate non-periodic
point sets with different symmetries, not just the pentagonal and decagonal symmetries asso-
ciated with the golden ratio, as shown in this work. Just as for periodic sampling it would be
interesting to compare the image reconstruction accuracy of square and hexagonal grids, for
non-periodic sampling it would be interesting to compare our decagonal quasicrystal tiling with
the dodecagonal Socolar tiling, which was recently proposed for use in sampling applications [38].

4 Conclusion

Cut-and-project quasicrystals present new possibilities for image sampling in computer graphics.
This non-periodic sampling approach deterministically generates uniformly space-filling point
sets, ensuring that sample sites are evenly distributed throughout the image. It offers a useful
compromise between predictability and randomness, between the standard periodic sampling
and the standard Monte Carlo sampling methods. Although blue noise sampling can generate
higher quality sampling patterns for photorealistic image reconstruction, quasicrystal sampling
may prove much simpler to implement and calculate. In the context of non-photorealistic image
rendering, quasicrystal sampling may prove attractive for its symmetry properties.
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Periodic sampling Quasicrystal sampling

Farthest point sampling Jittered sampling

Quasirandom sampling Random sampling

Figure 11. Image sampling strategies rendered using the mosaic style (4225 samples ≈ 2.6%).
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Periodic sampling Quasicrystal sampling

Farthest point sampling Jittered sampling

Quasirandom sampling Random sampling

Figure 12. Image sampling strategies rendered using the “paint strokes” style (4225 samples ≈ 2.6%).
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Periodic sampling (PSNR = 18.58) Quasicrystal sampling (PSNR = 18.52)

Farthest point sampling (PSNR = 18.55) Jittered sampling (PSNR = 18.31)

Quasirandom sampling (PSNR = 18.24) Random sampling (PSNR = 17.93)

Figure 13. Image sampling strategies rendered using Shepard interpolation (4225 samples ≈ 2.6%).
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Figure 14. Quantitative evaluation of image sampling strategies rendered using Gouraud shading.
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