
A
r
c
a
m
s
d
s
d
a
c
t
s
t
d
W
d
f
�

1
E
o
i
t
t
t
i
a

*

i
h

P
2
2
o
f
i
1

Journal of Electronic Imaging 17(1), 013009 (Jan–Mar 2008)

J

Stylized multiresolution image representation

Mark Grundland*

Chris Gibbs
Neil A. Dodgson

University of Cambridge
Computer Laboratory

15 J. J. Thomson Avenue
Cambridge CB3 0FD, United Kingdom

E-mail: mark@eyemaginary.com
bstract. We integrate stylized rendering with an efficient multi-
esolution image representation, enabling a user to control how
ompression affects the aesthetic appearance of an image. We
dopt a point-based rendering approach to progressive image trans-
ission and compression. We use a novel, adaptive farthest point

ampling algorithm to represent the image at progressive levels of
etail, balancing global coverage with local precision. A progres-
ively generated discrete Voronoi diagram forms the common foun-
ation for our sampling and rendering framework. This framework
llows us to extend traditional photorealistic methods of image re-
onstruction by scattered data interpolation to encompass nonpho-
orealistic rendering. It supports a wide variety of artistic rendering
tyles based on geometric subdivision or parametric procedural tex-
ures. Genetic programming enables the user to create original ren-
ering styles through interactive evolution by aesthetic selection.
e compare our results with conventional compression, and we

iscuss the implications of using nonphotorealistic representations
or highly compressed imagery. © 2008 SPIE and IS&T.
DOI: 10.1117/1.2898894�

Digital imaging does not attempt to present a com-
plete reconstruction of an object. Instead, it samples
the object at rapid rates, reproducing just enough to
create the illusion of a complete representation,
not unlike an impressionist painting.

—Richard O’Donnell1

Introduction
very image has a grain. Whether a brush stroke of paint
n canvas or an artifact of interpolation and compression, it
s the telltale mark of the image rendering process. It allows
he viewer to surmise the extent to which the image may be
aken literally. This surface texture is the crucial visual cue
hat mediates the scale at which an image ceases to be
nformative. By leaving the details to the imagination, it is
n invitation for interpretation to take the place of observa-

To obtain a color version of this paper as well as additional
llustrations and animations, please visit:
ttp://www.eyemaginary.com/Portfolio/Publications.html
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tion. An image can thus express more than what it records.
Artists often seek to set the mood of a picture indepen-
dently of its subject. Traditionally, artists use stylized ren-
dering to set the stage for the reception of their work. For
instance, cinematography has the convention of using
grainier film stock to distinguish a flashback from the cen-
tral narrative, and the film grain may need to be synthesized
for special effects to be believable. Deliberate stylized ren-
dering shapes the viewer’s impression of an image, allow-
ing visual artifacts to play a constructive role in visual com-
munication. Contrast the expression of artistic intent
exhibited by the evocative or decorative motifs of tradi-
tional techniques, such as watercolors or engraving, with
the computational expediency reflected in the blurring or
blocking artifacts of imaging algorithms, such as interpola-
tion and compression. Conventional image representations
assume that images are only meant to inform, neglecting
the fact that images also seek to impress. Effective graphic
design calls for the right balance of visual fidelity and vi-
sual style. Hence, an image representation should offer an
integrated approach to both of these fundamental concerns
of visual communication. Traditional art and electronic im-
aging value the economy of expression in visual represen-
tation, conveying the most information with the least effort.
In image compression,1 there is a need to reconcile effi-
ciency with aesthetics.

These considerations motivate our framework for the
stylized rendering of minimal data �Fig. 1�. Our aim is to
give the graphic designer control over the aesthetic appear-
ance of a compressed image. We address the creative chal-
lenge faced by the graphic designer, the person responsible
for the effective presentation of visual information.
Through the choice of rendering style, the graphic designer
can ensure that the image conveys an impression appropri-
ate to its purpose and context. We investigate how an effi-
cient, multiresolution image representation can support di-
verse styles of presentation, encompassing both
photorealistic image reconstruction �PR� and nonphotoreal-
istic image rendering �NPR�. The task requires close coop-
eration between representation and stylization. Otherwise,
if styling is treated as a mere afterthought naively applied
on top of normal image compression, the rendition would
risk being inappropriately degraded by the information loss.
Just as a painting can hardly be conveyed by describing the

individual curves of its brush strokes, the rendering ele-
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ents of typical NPR techniques defy simple description.
ndeed, a typical NPR rendition normally needs to be stored
t the full resolution of the display device to avoid marring
he artistic effect. We introduce an image representation
uitable for stylized rendering and stylization techniques
esigned for compact encoding. Our approach thus sup-
orts much more efficient storage of stylized image rendi-
ions. As an alternative to conventional means of compress-
ng and rendering images, our method enables the design of
ovel image rendering styles that have the advantage of
eing fully compressible. Typical applications include the
rogressive display of multimedia presentations, where im-
ges are transmitted over a narrow bandwidth network to
isplay devices with variable resolutions, as well as the
ompact storage of picture collections, where the images
re meant to be presented in a consistent artistic style. With
uch applications in mind, we propose an image represen-
ation that is:

• Compact: Enables efficient lossless and lossy com-
pression.

• Secure: Deters unauthorized access by scrambling the
data.

• Progressive: Exhibits a smooth transition between
multiple levels of detail, culminating in an exact re-
construction.

Fig. 1 Nonphotorealistic image rendering u
�3200 samples �2%�.

Template Photograph

Adaptive Sampling

Procedural

Voron
• Flexible: Supports diverse photorealistic reconstruc-

ournal of Electronic Imaging 013009-
tion techniques and nonphotorealistic rendering styles.
• Intentional: Allows the artist to creatively formulate

novel rendering styles.

This work gives an extended account of work presented
at SPIE’s Electronic Imaging 2005 conference.2 We first
briefly introduce our method �Sec. 2� and then outline its
background and related work �Sec. 3�. We describe our
image representation and the way in which it supports a
variety of progressive sampling mechanisms �Sec. 4� and a
broad range of NPR styles �Sec. 5�. Next, we show how a
graphic designer can use a simple interface to design new
NPR styles �Sec. 6�. Finally, we compare our representation
with conventional image compression �Sec. 7�, showing
how our results produced dramatically different visual arti-
facts, and we briefly discuss the implications of stylization
for compact image representations �Sec. 8�.

2 Overview
Our image representation simply consists of a sequence of
colors sampled from the original template image. Only the
color value of each sample site is stored explicitly. The
shape, size, and placement of its region of influence on the
rendition are all inferred from the information carried by
the preceding samples. A Voronoi spatial partition keeps

our coverage adaptive sampling technique

ring Style

gram

Geometric Rendering Style

Delaunay Triangulation
sing

 Rende

oi Dia
track of the sample sites and their image marks, facilitating
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he efficient calculation of neighborhood relationships be-
ween the sites. This data structure can also help identify
uitable locations for subsequent sample sites, according to
he principle of sampling the center of the least known
egion of the image. Our novel adaptive farthest point sam-
ling technique balances the requirement to uniformly
ample the image with the desire to accurately capture its
ariations. The result is a multiresolution image represen-
ation consisting of progressive levels of detail. Compres-
ion can be achieved by truncating the sequence and by
fficiently encoding the differences between predicted and
ampled colors. For security, a password can initialize the
ampling sequence by determining the placement of the
rst few sample sites.

NPR research has predominantly taken the strategy of
mulation, finding a rendering algorithm specific to a tradi-
ional medium or style. By contrast, we have developed
lgorithmic rendering styles that are distinctly digital, pos-
ibly appearing “painterly” but without any pretense to ac-
ual painting. We take the approach of searching for general
esign principles rather than treating the construction of
ach NPR effect as a special case. Our framework acts as a
emplate, translating the design of novel NPR styles into
he application of more established techniques, such as
arametric procedural textures. We present a unified sam-
ling and rendering framework �Fig. 1� based on the
oronoi diagram and the Delaunay triangulation. The
oronoi diagram has already proven its utility in powerful
hotorealistic techniques of image reconstruction from
cattered point samples, such as natural neighbor interpola-
ion. We further explore its role in the development of
ovel NPR methods. Our approach takes advantage of the
ncertainty inherent in interpolation to generate a variety of
endering styles. For a geometric style, the image mesh is
efined through geometric subdivision, and the resulting
essellation of image marks is rendered by various styles of
hading. Alternatively, a procedural style resembles a pro-
edural texture that is parameterized by the image mark’s
olor sample and the spatial configuration of the nearby
ample sites. Finally, we show how genetic programming
rovides graphic designers with the tools to express their
reative intentions by constructing novel procedural render-
ng styles through the process of interactive evolution by
esthetic selection. In this creative design process, the
raphic designer contributes the indispensable aesthetic
udgment to guide the evolution of his or her work in re-
ponse to a selection of possible realizations presented by
he program. This approach neatly combines the strengths
f the two parties: the aesthetic judgement of the human
nd the computational power of the computer.

Background and Related Work

.1 Nonphotorealistic Image Stylization
ur automated image rendering technique is based on
ainting with brush strokes. This popular NPR approach is
he basis for numerous commercial artistic tools, such as
tudio Artist,3 Corel Painter,4 and Piranesi.5 Pioneered by
aeberli6 and recently surveyed by Hertzmann,7 this ap-
roach represents a photographic image by a collection of
rush strokes, basic rendering primitives parameterized by
ocation, size, orientation, shape, color, texture, and opacity.

he template image is sampled, the image samples deter-

ournal of Electronic Imaging 013009-
mine the placement and proprieties of the brush strokes,
and these brush strokes are composited to generate the styl-
ized rendition. Many interactive,8 automated,9 and
animated10 brush stroke rendering algorithms can produce a
multiresolution image representation by painting a se-
quence of layered brush strokes. Although they can poten-
tially be used for progressive image display, these systems
were not designed for use in progressive image compres-
sion, since they generally assume that the full resolution
template image is available throughout the rendering pro-
cess. There are various alternative methods for image styl-
ization, including halftoning,11 texture transfer,12 and image
analogies,13 but they are likewise unsuitable for progressive
image compression because they too rely on access to the
full resolution template image. Our research into the
graphic design of the compression and interpolation arti-
facts of color images is inspired by the artistic screens14

used to embed an expressive motif in the printed grain of a
poster or a banknote.

We apply interactive evolution15 by aesthetic selection
as a user interface for designing NPR styles. At each itera-
tion of our interactive optimization technique, a genetic
programming algorithm presents a selection of solutions to
the user, who then subjectively evaluates their fitness. In-
teractive evolution has been successfully applied in the syn-
thesis of graphical objects,16 especially decorative and ab-
stract art.17 Normally in computer graphics, the
evolutionary process directly transforms the contents of the
image18 rather than producing a reusable image transforma-
tion. However, in medical imaging applications, interactive
evolution has been used to construct transfer functions for
volume rendering19 and coloring functions for image
fusion.20 A precedent for our approach can be found in
Dalton’s work on NPR style design using automated opti-
mization by neural networks and fuzzy logic,21 as well as
interactive optimization by genetic algorithms,22 leading to
the development23 of Studio Artist.3 While Dalton origi-
nally applied genetic algorithms to tune the numeric param-
eters of image processing filters,22 we instead rely on ge-
netic programming to construct the mathematical
expressions that define our procedural rendering styles. In
this way, we enable constructive design to augment combi-
natorial search. By reducing the development of NPR styles
to the formulation of parametric procedural textures, we
make it possible to create novel NPR styles by applying
Sims’ genetic programming technique24 for evolving proce-
dural textures. Standard procedural coloring and texturing
methods25 have long proven valuable in multiresolution
painting systems.26 By relying on procedural rendering
primitives, our system can render stylized images at any
desired output resolution.

3.2 Nonphotorealistic Image Compression
Historically, image and video compression was the first
successful, practical application of automated NPR sys-
tems. The bandwidth constraints of early imaging systems
motivated the development of automated cartoon rendering
sketched using edge detection. It enabled efficient coding
of black-and-white27 and grayscale28 images for transmis-
sion at very low bit rates. For example, in 1985, cartoon
rendering made possible a visual communication system

29
for the deaf that worked in real time over telephone lines.

Jan–Mar 2008/Vol. 17(1)3
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mage stylization in most of these early systems was lim-
ted to simple colorings of edge map regions. As such a
aint-by-numbers rendering style can appear artificial, early
mage quantization30 and compression31 systems sometimes
dded random noise to the picture to mask visual artifacts
nd restore a semblance of image grain. With increasing
ommunication bandwidth and storage capacity, the visual
implicity of cartoon rendering became unnecessary for
eal-time compression performance, and stylized rendering
as replaced by photorealistic reconstruction. As a result,

he relevance of image stylization to image compression,
he relationship of aesthetics and abstraction to efficiency
nd fidelity, has not been widely studied. Where painterly
isual artifacts were observed in conventional image com-
ression algorithms, such as fractal compression,32 mor-
hological compression,33 and edge coding,34 they have
sually been regarded as little more than a curiosity. In-
tead, we treat them as an opportunity for the development
f novel approaches to the efficient representation of visual
nformation. Our image representation allows the graphic
esigner to adapt the appearance of a picture to match its
urpose. In the wider context of image reproduction, simi-
ar aims are pursued by color gamut mapping techniques
hat take into account the user’s rendering intent.35

The ability of stylized rendering to simplify visual rep-
esentations is important for minimal graphics.36 This fun-
amental open problem in computer graphics and vision
nvolves the design of visually pleasing depictions that ex-
ibit the minimal complexity necessary to convey a mes-
age. Schmidhuber,37 motivated by both visual aesthetics
nd information theory, created an interactive drawing tech-
ique based on a self-similar grid that enables simple
ketches to have a compact encoding. The graftal
pproach38 offers a concise, multiresolution representation
or an interactive NPR system, which combines various
tyles of hand-drawn illustration with the understanding of
he scene geometry required to render the correct level of
etail. In an automated NPR system, it is always possible to
pply image stylization to a compressed or downsampled
mage, as suggested for scale-dependent pen-and-ink
llustrations.39 However, stylization cannot make up for the
oss of relevant image detail, and it is prone to exaggerating
ny pre-existing compression or interpolation artifacts. Ap-
lying lossy compression to stylized images tends to unac-
eptably degrade the artistic effect, as the intricate surface
extures of many NPR effects often prove difficult to com-
ress efficiently, especially when they are produced by a
seudorandom process. Similarly, existing lossless image
ncodings are ill suited for stylized depictions.
xperiments40 show that stylized renditions are most com-
actly encoded as brush stroke sequences. Unfortunately,
n explicit description of all the brush stroke properties is
sually too complex to allow for efficient compression.
ven reducing the number of brush strokes through time-
onsuming optimization is insufficient to make a brush
troke image representation as efficient as conventional im-
ge encoding.41 For automated color image compression,
he NPR representations have so far proven considerably
ess compact than comparable photorealistic encodings. By
ontrast, our approach offers a concise, multiresolution im-
ge representation that is equally well suited to both styl-

zed rendering and photorealistic reconstruction. Our

ournal of Electronic Imaging 013009-
framework reduces a brush stroke image representation to
just a sequence of pixel colors, which is carefully selected
to give the best image approximation at each level of detail.

3.3 Voronoi Diagram and Delaunay Triangulation
Having deliberately limited ourselves to only working with
a progressive sequence of point color samples, we need to
make efficient use of this scarce resource. Hence, unlike the
brush stroke methods that allow their strokes to overlap,
our image representation is based on the Voronoi spatial
partition.42 Each Voronoi polygon designates an image
mark, the region of influence of a sample site on the rendi-
tion. A Voronoi diagram �Fig. 1, bottom center� is a prox-
imity graph that subdivides the image plane by assigning
each point in the plane to its closest sample site. A Voronoi
polygon of a sample site is the region that is closest to its
site. A Voronoi edge is equidistant to its two closest sites,
while a Voronoi vertex is equidistant to three or more of its
closest sites. For the Euclidean distance metric, the Voronoi
polygons have convex shapes. If sample sites with adjacent
Voronoi polygons are connected by edges, they form a dual
graph, the Delaunay triangulation �Fig. 1, bottom right�.
These geometric data structures help our sampling and ren-
dering algorithms to efficiently keep track of the sample
sites, their spatial configuration, and their nearest neighbor
relationships.

Adaptive image reconstruction is an important applica-
tion for Voronoi diagrams.43 Spatial partitions are used in a
variety of methods for photorealistic image reconstruction
from scattered point samples.44 Delaunay triangulations
support a hierarchical image representation offering
antialiasing,45 a technique readily applicable to our system.
Fast linear interpolation by Gouraud shading can render
Delaunay triangulations,45 and it has been used for image
compression.46,47 The more accurate natural neighbor inter-
polation relies on Voronoi diagrams,48 and it too has proven
useful for image compression.49 In the context of NPR,
Haeberli6 rendered images as geometric tilings with only a
small number of optimally placed Voronoi tiles. Temporally
coherent animations can be generated from a Voronoi dia-
gram of a still frame50 or a video sequence,51 and these
approaches can be easily adapted to support our rendering
techniques. Various kinds of Voronoi diagrams have been
used for cubist stylization,51,52 stipple drawings,53,54 and or-
namental mosaics.55 Whereas these previous rendering
methods have been very much application specific, we pro-
pose two general techniques for designing novel rendering
styles.

Optimal incremental algorithms42 generate a Voronoi
diagram for N sites in O�N log N� worst-case running time.
However, the overhead of maintaining the complex data
structures required by these computational geometry algo-
rithms may not be justified, since our rendering operations
only involve the image pixels. Hence, we use a discrete
Euclidean Voronoi diagram that maps each pixel to its clos-
est site. To calculate an entire discrete Voronoi diagram, in
time proportional to the area of the image, a fast distance
propagation algorithm56 visits most pixels only once.
Danielsson’s classic scan line algorithm,57 a simpler tech-
nique that requires no extra storage, uses just six distance
comparisons per pixel. Alternatively, a discrete Voronoi

diagram can be constructed using the z-buffer on standard

Jan–Mar 2008/Vol. 17(1)4
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-D graphics hardware.58 In our system, the samples are
eceived sequentially. To incrementally insert a new sample
ite into the discrete Voronoi diagram, we trace the perim-
ter of the new Voronoi polygon. The number of distance
omparisons required is proportional to its perimeter, while
he number of pixel updates is proportional to its area.

The discrete Voronoi diagram has some minor pitfalls
hat require careful implementation. We impose the as-
umption that each discretized Voronoi polygon is simply
onnected. The remaining approximation errors can be
herefore safely ignored, since they are confined to isolated
ixels. On rare occasions, it may not be possible to exactly
ecover a Delaunay triangulation, because of the difficulty
f distinguishing a genuine Voronoi vertex from an arbi-
rarily short Voronoi edge. For our approximation to the
elaunay triangulation, it is sufficient to connect a pair of

ample sites by an edge whenever we locally detect a
hared edge between their discretized Voronoi polygons.
ince the Delaunay triangulation only covers the convex
ull of its sites, we need to extend the triangulation to the
hole of the image rectangle. For each site whose Voronoi
olygon intersects an image boundary, we project the site
erpendicularly onto the boundary and a duplicate site
s placed there. The resulting strip of trapezoids,
hich frames the image rectangle, is straightforward to

Fig. 2 Voronoi diagrams for nonadaptive samp
periodic, nonperiodic, and farthest point sampli
quasirandom, and random sampling.
riangulate.

ournal of Electronic Imaging 013009-
4 Sampling
We tested a range of sampling schemes for progressive se-
lection of the sample sites. Nonadaptive sampling globally
maintains a uniform resolution regardless of the image, im-
portance sampling regionally adjusts its resolution to reflect
the visual significance of image features, and adaptive sam-
pling locally varies its resolution to capture the spatial dis-
tribution of image details. While nonadaptive and adaptive
sampling are automatic, importance sampling enables the
user to define regions of interest for the sampling process.

4.1 Nonadaptive Sampling
We start by reporting our investigations into the possibili-
ties offered by nonadaptive progressive sampling schemes.
These are important as building blocks for adaptive meth-
ods. At a given resolution, a nonadaptive sampling can be
precomputed and stored as an array of pixel pointers. Either
the sampling or its generating algorithm is assumed to be
available to both the encoder and decoder, so it does not
form part of the image representation itself. With no pre-
conceptions about the distribution of visually salient fea-
tures in the template image, the same amount of informa-
tion should be devoted to representing each part of the
image. Hence, the number of sample sites placed in any

hemes. The top row, from left to right, shows
e bottom row, from left to right, shows jittered,
ling sc
ng. Th
region of the image should be proportional to its area, so

Jan–Mar 2008/Vol. 17(1)5
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hat the sampling density remains constant throughout the
mage. The distribution of sample sites should be uniform
nd isotropic while still allowing for a variety of different
ample site configurations. Maintaining a minimum dis-
ance between sample sites serves to avoid clustering. As-
uming that correlation between pixels decreases with dis-
ance, for a sample to be most representative of its image
ark, it should lie close to the centroid of its Voronoi poly-

on. We take all these considerations into account when
hoosing the nonadaptive sampling scheme that will pro-
ide site candidates for our adaptive sampling scheme.

We tested a number of nonadaptive sampling schemes59

Fig. 2�. We used Voronoi diagrams to visualize the differ-
nces between them, and we studied their effect on ren-
ered images. The various nonadaptive sampling schemes
eflect different approaches to the inherent tradeoff between
oise and aliasing. They offer different combinations of
esirable properties, such as accurate reconstruction, pro-
ressive refinement, uniform coverage, isotropic distribu-
ion, blue noise spectrum, centroidal regions, and heteroge-
eous local configurations.

In regular periodic grids,59 such as the familiar square
attice or the denser hexagonal lattice, the sample sites are
pread out evenly. For multiresolution imaging, the order of
ampling can be specified by a quad tree or a recursively
efined space-filling curve. Regular grids suffer from re-
etitive aliasing artifacts, made more distracting by being
ligned along straight lines.

Self-similar nonperiodic grids are produced using the
eometry of hierarchical substitution tilings60 or the algebra
f cut-and-project quasicrystals,61 which we used in our
xperiments. Nonperiodic tilings, such as Penrose tilings,62

ang tilings,63 and polyomino tilings,64 have proven very
seful in sampling. They guarantee a minimum distance
etween sample sites while exhibiting a less monotonous
attern of sample site configurations than periodic grids.
he self-similar structure of some nonperiodic grids can be
ttractive to a graphic designer looking to endow the ren-
ition with a sense of decorative symmetry �Fig. 6, top
eft�.

The orderly appearance of any deterministic grid can
lways be concealed by randomly perturbing each site,59

ith the magnitude of the random displacement determin-
ng the minimum distance between sample sites. In our
xperiments, the resulting jittered grids produced visually
nferior results compared to quasirandom sampling
ethods,59 such as the Halton sequence, which seek to uni-

ormly spread out sample sites without any apparent pat-
ern. In both approaches, the sample sites are often placed
ar from the centroids of their Voronoi polygons, which is
ndesirable. They are still an improvement over random
ampling from a uniform random distribution, which tends
o cluster sample sites together, producing uneven image
arks that give the rendition a grainy appearance.
Farthest point sampling65 uses the Voronoi diagram to

irect sample placement. It is the iterative strategy of sam-
ling at the point of least information, which is taken to be
he point farthest from all the previous sites. One starts by
ampling the corners of the image rectangle and a few ran-
omly chosen internal sites. When the intersections of the
mage rectangle with the edges of the Voronoi diagram are

ncluded as vertices, the farthest point is necessarily a ver-

ournal of Electronic Imaging 013009-
tex of the bounded Voronoi diagram. This is because, in a
bounded Voronoi polygon, the vertices are the points far-
thest away from their closest sample site. It is possible to
incrementally sample N sites in O�N log N� time by main-
taining a balanced binary tree of Voronoi vertices ordered
by their distance from their closest sample sites. Farthest
point sampling is guaranteed to produce a uniformly dis-
tributed sample set. The minimum distance between sites is
provably at least half the maximum distance between any
site and its closest neighbor. New sample sites are only
placed at points equidistant to three or more of their closest
sites. For this reason, farthest point sampling appears to
naturally place sites close to the centroids of their Voronoi
polygons. These sample sets are especially well suited for
antialiasing, since they have been shown to have an isotro-
pic power spectrum that mimics the ideal blue noise spec-
trum of the Poisson disk distribution.

In general, farthest point sampling �Fig. 3, top center�
produced the best visual results of all the nonadaptive
methods we tested. We recommend it for both its consistent
performance and its intuitive appeal. The image marks pro-
duced by farthest point sampling tend to have similar
shapes and sizes. If a greater variety of image mark shapes
is desired, quasirandom Halton sampling �Fig. 3, top left�
can simply be used instead. Once about 20% of the tem-
plate image’s pixels have been sampled, most of the re-
maining unsampled pixels will have a sampled pixel as one
of their eight adjacent neighbors. Under these circum-
stances, we observed little perceptible difference between
the different nonadaptive sampling schemes. For a progres-
sive rendering that culminates in an exact reproduction, the
remaining pixels can easily be sampled either in scan line
or random order.

4.2 Importance Sampling
For selective emphasis, the user can specify a grayscale
importance map for the template image to indicate the level
of detail required. High importance is usually given to dis-
tinguishing features, boundaries between objects, and re-
gions of inhomogeneous texture. In this way, a graphic de-
signer can direct the system to capture foreground details
with small image marks, while outlining background shad-
ing with large image marks. Normally, an importance map
is interpreted by applying rejection sampling to filter site
candidates generated by one of the nonadaptive sampling
schemes. The gray level of each pixel of the importance
map is equated with the probability of accepting a sample
site at that location. In our framework, we extend farthest
point sampling to support an importance map. At each turn,
the algorithm inserts a new sample site at the Voronoi ver-
tex that is the farthest scaled distance away from any exist-
ing sample site. We define the scaled distance between a
Voronoi vertex and a sample site to be the squared Euclid-
ean distance multiplied by the importance map value at the
vertex. In effect, the importance map exerts a geometric
distortion on the farthest point sampling process.

To cover the large-scale features of interest, it is suffi-
cient to store a low-resolution importance map. In our ex-
amples, we stored the importance map as a 32�32 icon
image with just 16 gray levels. Using such a low-resolution
importance map �Fig. 3, top right� to guide nonadaptive

sampling can dramatically improve the visual quality of the

Jan–Mar 2008/Vol. 17(1)6
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endition. Applying adaptive sampling in conjunction with
n importance map �Fig. 3, bottom right� results in sharper
dges and clearer details. In this approach, the user pro-
ides the aesthetic judgment and semantic understanding
equired to determine the global priorities for sampling,
hile the algorithm relies on geometric measurements and

tatistical analysis to determine the local placement of the
ample sites. Without an importance map, adaptive sam-
ling methods �Fig. 3, bottom left and bottom center� must
ely entirely on local image properties, resulting in less
ocused renditions. While user-specified importance maps8

re a common feature of interactive NPR systems, auto-
atic NPR systems have relied on computer-generated im-

ortance maps derived from color variance measures11,51 or
erceptual salience models.52 As the encoding of an image
epresentation is usually expected to proceed with minimal
ser intervention, similar automatic techniques for identify-
ng regions of interest could be readily adapted for our
urposes.

.3 Adaptive Sampling
daptive progressive sampling seeks the sample site that
aximizes the perceptual similarity between the given tem-

late image and the emerging rendition. Its task is to sum-

Fig. 3 Sampling schemes rendered using “pain
top row, from left to right, shows nonadaptive sa
driven farthest point sampling. The bottom row,
adaptive, coverage adaptive, and importance-d
arize the picture by a point set. Taking advantage of the

ournal of Electronic Imaging 013009-
local effect that a new sample site exerts on the rendition, a
simple adaptive procedure can independently evaluate a se-
quence of site candidates provided by a nonadaptive sam-
pling scheme. At each iteration, it selects the candidate that
fosters the greatest improvement in the rendition. With each
accepted color sample, it stores the number of preceding
candidates that were skipped over. Alternatively, it is pos-
sible to adaptively place sample sites according to image
features, such as edges,46,48 ridges and valleys,48,49 or least
accurately approximated image regions.47 However, in
these techniques, storing the sample site positions reduces
the space available for the sampled image values. As the
sampling process progresses, the visual impact of optimal
placement decreases, so that the extra effort and storage is
unlikely to be justified.

Our adaptive sampling encodes an image solely through
a sequence of its colors. To require no extra storage, a
progressive adaptive sampling technique must base its
choice of the next sample site entirely on the information
contained in the preceding sites. To help decide where best
to sample next, a Voronoi diagram keeps track of the spatial
arrangement of the sample sites. Previous work45 has sug-
gested that new sample sites should be placed to randomly
split either Delaunay edges exhibiting a large color differ-

s” rendering style �6554 samples �2.5%�. The
: quasirandom, farthest point, and importance-
ft to right, shows adaptive sampling: bandwidth
overage adaptive sampling.
t stroke
mpling

from le
riven c
ence or Voronoi polygons covering a large area, but no
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Grundland, Gibbs, and Dodgson: Stylized multiresolution image representation
xplicit rule was given to help make the decision. Instead,
daptive farthest point sampling evaluates Voronoi vertices,
hich are natural candidates for locally uniform sampling,

ince they are the points farthest away from their closest
ample sites. The bandwidth adaptive sampling scheme
Fig. 4, top row� originally proposed for farthest point
ampling65 has its drawbacks. In this scheme, Voronoi ver-
ices are selected to maximize a rough estimate of their
ocal bandwidth multiplied by their squared Euclidean dis-
ance to their closest sample sites, which is proportional to
he unsampled circular area around them. In our experi-
ents �Fig. 4�, bandwidth adaptive sampling overly clus-

ers sample sites in the vicinity of the high frequency de-
ails and high contrast contours it uncovers, yielding too
ittle discernable refinement once the sampling has pro-
ressed sufficiently far. Also, since a minimum local sam-
ling density is not upheld, significant features may elude
iscovery for as long as their surroundings are deemed to
ave low bandwidth. When the rest of the image is seen to
ave sharply defined details, the viewer is apt to assume
hat the missing elements are absent from the picture.

Our coverage adaptive sampling �Fig. 4, bottom row� is

Fig. 4 Adaptive farthest point sampling techniq
left column displays a sparse sampling �2450
display a denser sampling �7350 samples �6%
�PSNR=24.31 and PSNR�26.58�, while the
�PSNR=23.54 and PSNR�26.06�. In the top row
left corner and a basket under the largest ballo
esigned to balance the need to uniformly sample the

ournal of Electronic Imaging 013009-
smooth tones of the template image with the desire to ac-
curately capture its edges and details. To ensure global cov-
erage, new sample sites should be placed in regions of low
sampling density to uncover new image features. To ensure
local precision, new sample sites should be placed in re-
gions of high image frequency to refine previously uncov-
ered image features. Our coverage adaptive sampling relies
on basic robust statistics. Start by uniformly surveying the
template image with nonadaptive farthest point sample
sites O. Subsequently, to determine the best next sample
site at each iteration �Fig. 5�, first randomly select a small
set of site candidates C from the vertices of the bounded
Voronoi diagram of the preceding sites. The properties of
this random subset are taken to be representative of the
statistics of the entire population of Voronoi vertices. For
each candidate, i�C, find the squared Euclidean
distance ri

2 to its closest sample sites and the luminance
intensities ln of its nearest neighboring sites n�Ni. Scale its
distance wiri

2 by an optional importance map wi�0, which
is assumed to be constant, wi=1, when not specified. Cal-
culate the mean absolute luminance deviation di of its

dered with Voronoi and Gouraud shading. The
es �2%�, while the center and right columns

top row shows bandwidth adaptive sampling
row shows our coverage adaptive sampling

that the images are missing a balloon in the top
ues ren
sampl
�. The

bottom
, note

on.
neighborhood:
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i =
1

�Ni�
�

n�Ni

�ln − �Ni
� for �Ni

=
1

�Ni�
�

n�Ni

ln. �1�

or estimating variation, this dispersion measure is more
esilient to outliers than statistical variance or Michelson
ontrast. Next, apply robust z-scores to standardize the two

riteria r̂i
2 and d̂i, so that they may be sensibly compared.

caling each criterion by its mean absolute deviation, ro-
ust z-scores give a relative measure of how far each crite-
ion deviates from its mean:

ˆi
2 =

wiri
2 − �r

�r
and d̂i =

di − �d

�d
, �2�

r =
1

�C� �
j�C

�wjrj
2 − �r� and �r =

1

�C� �
j�C

wjrj
2, �3�

d =
1

�C� �
j�C

�dj − �d� and �d =
1

�C� �
j�C

dj . �4�

inally, evaluate the combined scores ei and select the can-
idate with the top combined score:

i = min�r̂i
2, d̂i� + � max�r̂i

2, d̂i� . �5�

This method of reconciling conflicting goals balances
lobal coverage with local precision. Given a z-score for
ach criterion, the final score gives greater weight to the
ower z-score over the higher z-score according to the
radeoff parameter, 0���1. Hence, the tradeoff parameter
ictates how high the higher z-score must be to dominate
he influence of the lower z-score. The top candidates must
ave either high z-scores for both criteria or an exception-
lly high z-score for one of them. A single low z-score does
ot necessarily eliminate a candidate. Hence, the algorithm
s able to select a candidate in a sparsely sampled area of
he image, even when no local variation has yet been un-
overed there. This strategy moderates the undersampling

f low-frequency regions �high r̂i
2 and low d̂i� with the

versampling of high-frequency regions �low r̂i
2 and

igh d̂i�. Our experiments use the parameters �=0.25,
O�=256, �C�=40, and �Ni�=6. A lower tradeoff parameter
ould increase the sampling density in high contrast re-
ions by decreasing it in low contrast regions.

When reconstruction error is measured by a sum of
quared RGB color differences, our coverage adaptive sam-
ling can exhibit slightly lower peak signal-to-noise ratio
PSNR� scores than the original bandwidth adaptive sam-
ling method, even when we detect visually prominent fea-
ures that the original method misses entirely �Fig. 4, top
ow, an entire balloon is missing�. This is because our
ethod purposefully devotes sample sites to maintaining a
inimal sampling density even in regions where local

ariation has yet to be uncovered. As the sampling
rogresses, the minimal local sampling density uniformly
ncreases throughout the image, ensuring features with that
esolution cannot elude discovery. This minimal resolution

uarantee for progressive image display gives our coverage

ournal of Electronic Imaging 013009-
adaptive sampling method a crucial advantage over the pre-
vious approach.

5 Rendering

5.1 Geometric Rendering Styles
Our geometric rendering styles �Fig. 6, top� are based on
the Delaunay triangulation,42 which is known to provide an
optimal spatial partition for piece-wise linear interpolation.
The Delaunay triangles serve as our basic rendering ele-
ments. Applying flat shading, by coloring the triangles ac-
cording to the average color of their vertices,45 has the gen-
erally undesirable effect of reducing the color contrast of
the image. For a more accurate image approximation, we
rely on Gouraud shading44–47 �Fig. 4, left and right�, which
first linearly interpolates the colors along each edge and
then linearly interpolates between edges across each hori-
zontal scan line. As well as directly interpolating the colors,
Gouraud shading can be used to generate decorative
patterns66 by interpolating indices to a color table that de-
fines the order and smoothness of the color changes. We
experimented with replacing the usual linear interpolation,
f�p�= tf�a�+ �1− t�f�b�, between colors f�a� and f�b�, by
nonlinear interpolation, f�p�=h�t�f�a�+h�1− t�f�b�, using a
symmetric power curve h�t�:

h�t� = �2�−1t� when 0 	 t 	
1
2

1 − 2�−1�1 − t�� when 1
2 	 t 	 1

. �6�

Our “brush marks” style �Fig. 9� uses this symmetric power

Fig. 5 Our coverage adaptive sampling and its Voronoi diagram.
The adaptive sampling process starts from an initial set of sample
sites O ��� obtained by farthest point sampling. At each iteration,
site candidates C ��� are randomly selected from the vertices of the
Voronoi diagram. Each candidate i ��� is evaluated according to
robust z-scores, which provide relative measures of the spatial prox-

imity r̂i
2 of its closest sample sites ��� and the luminance variation d̂i

of its nearest neighboring sample sites Ni �� and ��.
curve to interpolate the colors along the triangle edges. For

Jan–Mar 2008/Vol. 17(1)9
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“patchwork” effect �Fig. 6, top right�, it is also applied to
onlinearly interpolate the colors along each scan line.

In addition to shading, we also apply geometric subdi-
ision to the Delaunay mesh to construct the tilings of our
eometric rendering styles. Each Delaunay triangle can be
ubdivided either into four triangles by joining the mid-
oints of its sides or into six triangles by the intersection of
ts altitudes, its medians, or its angle bisectors. In our ex-

Fig. 6 Nonphotorealistic image rendering styles
saic” �3200 samples �2%� on the left and “patc
row shows procedural rendering styles, “color h
painting” �4800 samples �3%� on the right. The
while the remaining styles rely on importance-d
mples, the same geometric subdivision is performed once

ournal of Electronic Imaging 013009-1
for all the Delaunay triangles, and the resulting tiles are
then shaded using a combination of flat, linear, and nonlin-
ear shading. The design of a geometric rendering style con-
sists of subdividing each Delaunay triangle, assigning col-
ors either to the newly created vertices of the subdivided
tiling or to the newly created tiles themselves, and choosing
a shading method for each newly created tile. For instance,
our “mosaic” rendering style �Fig. 6, top left� is formed by

op row shows geometric rendering styles, “mo-
�4800 samples �3%� on the right. The bottom
” �9600 samples �6%� on the left and “sponge
c style uses nonperiodic quasicrystal sampling,
overage adaptive sampling.
. The t
hwork”
atching
mosai

riven c
joining the midpoints of the edges of each triangle to make

Jan–Mar 2008/Vol. 17(1)0
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hree outer triangles and one inner triangle. The outer tri-
ngles are flat colored with the original colors of the asso-
iated samples, while the central triangle is colored black.
n this way, each sample site gives rise to a star-shaped
olygon, while the black central triangles serve as grout
etween the tiles. The mosaic tiles appear as tightly packed
s possible, and their layout reflects the structure of the
ampling. Farthest point sampling produces tiles of uniform
ize and similar shape to create a pebble mosaic, while a
elf-similar quasicrystal sampling yields a decorative tiling
ith a small set of possible tile shapes.
In another example, our “paint strokes” rendering style

Fig. 3 and Fig. 8� uses the same subdivision as the “mo-
aic” style. For each Delaunay edge, its midpoint color is
et to be the least neutral color of its two vertices, which is
aken to be the color farthest from neutral gray. As in the
brush marks” style, nonlinear interpolation is used on the
dges of the subdivided triangles while linear interpolation
s used along the scan lines. The resulting style, reminiscent
f the bold, angular strokes of a painting knife, assumes
hat plausible, saturated colors are preferable to colors that
ppear faded due to interpolation. Our framework offers
lenty of scope to create different styles in search of a
articular expression.

.2 Procedural Rendering Styles
ur procedural rendering styles �Fig. 6, bottom�, are based
n the Voronoi diagram,42 which provides an efficient geo-
etric data structure for keeping track of nearest neighbor

elationships. They have the expressive power of paramet-
ic procedural textures25 that adapt to local sampling prop-
rties such as color, density, and anisotropy. Hence, they
an benefit from the rich library of functional components,
uch as multiresolution noise generators, and design meth-
ds, such as genetic programming, that already have been
eveloped for procedural textures. Our approach is inspired
y photorealistic image reconstruction through the use of
ocal filters centered at the sample sites.59 Our approach is
lso broadly related to the Shepard method for inverse dis-
ance weighted interpolation,44 where the influence of
earby sample sites on an interpolated pixel decreases as
heir distance to the pixel increases. For each pixel p, we
se the Voronoi diagram to find its closest sample site s1.
o determine the pixel’s neighborhood, we approximate the
ixel’s nearest neighbors by its closest sample site’s nearest
eighbors. We select the K nearest neighboring sample
ites sk in order of increasing Euclidean distance 
�s1 ,sk�
rom the pixel’s closest sample site s1. The pixel’s color

f�p� is calculated as a weighted sum of the colors f�sk� of
ts K neighboring sample sites sk, with the weights deter-
ined by their local filter functions ��p ,sk�:

f�p� =
�k=1

K ��p,sk�f�sk�
�k=1

K ��p,sk�
. �7�

he neighborhood size K is chosen empirically to be large
nough such that any further increase has negligible effect
n the rendition, typically 10�K�40; when K is too
mall, spurious discontinuities may appear along the edges
f some Voronoi polygons. The design of a procedural ren-
ering style is encapsulated by its filter function ��p ,sk�.

sually, we use spatially invariant, non-negative filters that

ournal of Electronic Imaging 013009-1
are constrained to act locally within the neighborhood: as

�p ,sk�→0, so ��p ,sk�→
, while as 
�p ,sk�→
�s1 ,sK�,
so ��p ,sk�→0. At each pixel, the filter function ��p ,sk�
usually puts much greater weight on sites relatively close to
the pixel than on sites that are far away. Our nonlinear filter
functions ��p ,sk� can depend on the distance and angle
between the pixel and the site, on the site’s index, and on its
sampled color. Separate filters can be used to control lumi-
nance and chrominance. It is possible to further extend this
approach by considering color properties fitted to the entire
neighborhood, such as the color gradient.

As with classical procedural textures, it is easy to build
up diverse rendering styles out of simple functional com-
ponents. For instance, weighting samples by inverse dis-
tance ��p ,sk�=
�p ,sk�−� renders Voronoi polygons with
soft edges. For an effect akin to looking at an image
through faceted glass, omit the closest sample site s1 from
the weighted sum ��p ,s1�=0, thereby subdividing each
Voronoi polygon into regions corresponding to its second
closest sample sites. Two more examples show the richness
of our framework. For the “sponge painting” style �Fig. 6,
bottom right�, the faceted glass style has been augmented
by painting randomly chosen pixels with the color of their
closest sample site. For the “color hatching” style �Fig. 6,
bottom left�, orientation is used. Its filter function is in-
versely related to the absolute difference between the Eu-
clidean and Manhattan distances between the pixel and its
neighboring sample site.

6 Evolution
An authentic artistic technique needs to offer the capacity
for original expression. Graphic designers may not be sat-
isfied with styles that come prepackaged and ready to use,
but rather require tools to create their own personal styles.
Just as the primary concern of a painter is not the chemistry
of paint, the graphic designer should be in control of the
rendering process without being required to grasp the com-
plexity of how it works. For graphic designers who are not
mathematicians, the development of algorithmic rendering
styles must be a process of discovery rather than invention.
Computer-assisted graphic design remains a creative task in
that the requirements leave the form of the solution un-
specified. We rely on interactive genetic programming as a
means for original expression because of its ability to ex-
plore an open-ended parameter space.

Interactive evolution15 by aesthetic selection offers a
user interface �Fig. 7, bottom� for exploring novel render-
ing styles. This “I-know-it-when-I-see-it” method of sto-
chastic optimization employs the user’s artistic judgment to
evaluate solutions proposed by the system. Our framework
enables us to directly apply genetic programming to formu-
late the filter functions of our procedural rendering styles. A
great variety of rendering styles �Fig. 7, top and right� be-
come easily accessible. The details of our rudimentary
implementation follow the classic work of Sims.24 A sym-
bolic expression tree defines the filter function of a proce-
dural rendering style. Our expression trees have five cat-
egories of parameter leaf: angle, Euclidean distance,
Manhattan distance, constant, and pseudorandom. They
have 11 types of operator node: cosine, add, subtract, di-
vide, multiply, power, select, if, superellipse, Perlin noise,

and texture map. At each iteration, the algorithm randomly

Jan–Mar 2008/Vol. 17(1)1
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lters some of the parameters and operators of the expres-
ion tree. Different mutations can occur with different prob-
bilities, dictating the prevalence of the various nodes. The
esulting variations are then rendered and presented to the
ser, who selects which one should survive to produce a
ew generation of solutions for further refinement. To con-
rol the variability of the proposed solutions, the user can
et the desired mutation rate. The process continues until
he user is satisfied with the outcome. The challenge of
nteractive evolution is to rapidly converge on the user’s
ntentions by continuously offering a variety of relevant
lternatives. This is a creative feedback loop, as the rendi-
ion can affect the vision that shapes it. The final result
eflects a personal preference rather than an ideal solution.
ompared to traditional genetic algorithms, this approach
ses a small population of solutions that evolve for far
ewer iterations in response to a far more intelligent fitness
unction embodied by the user’s visual perception and aes-
hetic judgment.

In future research, we wish to make the rendering styles
roposed by our interactive evolutionary algorithm more
elevant to the user’s aesthetic preferences. The user’s past
hoices could be taken into account when generating a new
election of styles. The algorithm should not suggest the
ame style again if its visual effect has been previously
ejected by the user. Before proposing a new selection of
tyles, the algorithm should also compare the styles with
ach other to ensure that they visually differ by approxi-
ately the same amount, as stipulated by the mutation rate,

o that each new style actually offers a distinct rendering
ossibility. Styles would need to be compared according to
heir rendered images rather than their expression trees, be-
ause structurally distinct expression trees can yield visu-
lly indistinguishable results. In practice, an approximate
omparison would be performed by rendering just a small

Fig. 7 Interactive evolution by aesthetic select
rendering.
ubset of the image pixels. In another approach, the user

ournal of Electronic Imaging 013009-1
could take a proactive role in directing the evolutionary
algorithm’s creative priorities, rather than being confined to
the reactive role of judging its creative results. The user
would designate the perceptual criteria most relevant for
success, such as vibrant, rough, or curly. Various image
analysis techniques would automatically score style candi-
dates according to the desired perceptual criteria, and only
the best candidates would be presented to the user for fur-
ther consideration. A final approach could allow the user to
apply different styles to different regions of the picture.
Instead of designing a single style for the entire image, the
user would be free to vary styles according to image con-
tent to emphasize the visual composition of the picture.
Interactive image segmentation would assist in this process.
To generate a family of styles, a user parameter would be
either embedded in the expression tree of a single master
style or applied to control a linear combination of two dis-
tinct styles, such as a foreground style and a background
style. Hence, the style parameter of each sample site would
need to be encoded in the image representation.

7 Compression
The progressive nature of our sampling methods allows our
NPR styles to be used for progressively rendering an image
as it is received over a narrow bandwidth network. The
nature of the representation also makes it a candidate for
image compression. Sending a truncated sequence of
samples is itself a form of image compression. In addition,
our sampling methods are amenable to any lossy or lossless
compression algorithm for a stream of scattered color
samples. To establish a baseline for future improvement,
we experimented with a simple scheme based on the De-
launay triangulation. Apart from the aspect ratio and an
optional importance map, we only store the colors of our

43

bles users to design the styles used in image
ion ena
sample sites. For security purposes, a password can be

Jan–Mar 2008/Vol. 17(1)2
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ranslated into the seed for the random number generator
hat helps to determine the first few sample site locations.
he rendering style definition could also be embedded, if it

s not already available to the renderer.
To construct the encoder, we start with an invertible pre-

ictive mapping. For the initial sample sites surveying the
emplate image, we keep the literal values of the first
O�=256 color samples. By seeding the rendition with a
ew representative colors, we minimize the color distortion
f later lossy compression. Regardless of the rendering
tyle, we predict the color of the new sample from the three
receding sites that form its surrounding Delaunay triangle.
e store the difference between the color sampled from the

emplate image and the color predicted by linear interpola-
ion. Color information is initially quantized as 5-bit color
omponents in the perceptually uniform Lab color space,
ssuming the template image starts out with 16 bits of RGB
olor per pixel. We truncate and quantize the differences
etween the actual and predicted color values. First we
lear the two least significant bits and then round the mag-
itude of the color component difference to the nearest
ower of 2. Finally, to perform symbol encoding, we apply
tatic Huffman compression. In this way, the number of bits
equired to encode each color difference is proportional to
he frequency of its occurrence. This encoding is appropri-
te for our use, since the scattering of the sample sites tends

Fig. 8 Progressive image rendering using the “
1%, 2%, 4%, 8%, 16%, and 32%.
o remove any correlation between them.

ournal of Electronic Imaging 013009-1
A lossless multiresolution image representation �Fig. 8�,
a progressive sampling of the entire template image, re-
quires exact storage of the color differences to preserve the
color of each sample site when rendering its pixel. This is
achieved by omitting the truncation and quantization step.
The compressed image data can then be rendered with dif-
ferent styles.

At high compression ratios, our method compares well
with the alternative strategy of storing the template image
using conventional lossy compression and then either dis-
playing the decompressed image directly or applying styl-
ized rendering to the decompressed image. We compare
�Fig. 9� our compression scheme to standard JPEG. With
the image compressed to roughly the same size, we see
that, in this example, our encoding produces a perceptually
more attractive rendering with less contouring and color
loss. However, if our rendering styles are applied to the
JPEG compressed image, effectively rendering the image
twice, the result �Fig. 9, top right� appears clearly degraded
by the JPEG artifacts, which are absent from our encoding.
This demonstrates the need for the image encoding scheme
to take account of the image rendering method. Previous
research on photorealistic image representations46,47 has
shown that, for high compression ratios, linear interpolation
of Delaunay triangulations obtained through adaptive sam-
pling can yield visually superior images compared to clas-

trokes” style with coverage adaptive sampling:
paint s
sical transform encodings, such as JPEG’s discrete cosine

Jan–Mar 2008/Vol. 17(1)3
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ransform. Our image representation extends these findings
o stylized rendering. However, closer integration of sam-
ling and encoding may be needed to compete with the
torage efficiency of more recent transform encodings, such
s JPEG2000’s discrete wavelet transform.

It is difficult to give any quantitative difference mea-
ures comparing the standard compression algorithms with
ur NPR method. NPR renditions appeal to highly nonlin-
ar aspects of human vision. To assess the perceptual qual-
ty of our results, we cannot rely on standard measures,
uch as PSNR. For example, a rendering that uses the
sponge painting” style introduces random noise into the
icture. While such a use of random noise is likely to de-
rease the signal-to-noise ratio, it may well improve the
uman perception of the rendered image, as demonstrated
y early approaches to image quantization30 and
ompression.31 Applying models of human visual process-
ng to evaluate NPR image representations is a research
hallenge that has only begun to be addressed.67

Discussion
concise visual representation demands that every element

Fig. 9 Image compression using the “brush ma
row, from left to right, the template image �512�
�7.0 K at 73:1�, and then the JPEG image is re
additional compression�. The bottom row shows
rendering the template image with the same n
sampling �12.8 K at 40:1�, next lossy quasirand
coverage adaptive sampling �7.2 K at 71:1�.
e essential to imparting its message. However, a physi-
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cally accurate portrayal of a scene, specific enough to make
every detail explicit, results in highly complex models.
While such descriptions may be encoded as efficiently as
their entropy allows, their intrinsic complexity cannot be
perceptibly reduced, even when it is superfluous to the pur-
pose of the image. Upholding the suspension of disbelief
needed for the viewer to equate representation with reality
requires a uniform resolution of detail, regardless of its
relevance for visual communication. This places a funda-
mental constraint on the efficiency of any photorealistic
image representation. How many needles should it take to
draw a pine tree? How many more to depict a pine forest?
When NPR is applied to image compression, it challenges
the criteria for deciding what needs to be conveyed for a
visual message to be well received by its audience. For
instance, consider the way a portrait painter depicts hair
with only a few broad brush strokes. Similarly, in our tech-
nique, regions of homogeneous texture with a high fre-
quency component may not require a proportionally high
sampling rate to be rendered effectively. When painterly
abstraction takes the place of conventional artifacts in im-
age rendering, such as aliasing and noise, it appears to di-

ndering style �10485 samples �4%�. In the top
6 bit color� is compressed using standard JPEG
d using quasirandom Halton sampling �without
mbined sampling and compression algorithms
of samples: first lossless quasirandom Halton
lton sampling �6.1 K at 84:1�, and finally lossy
rks” re
512, 1
ndere
our co

umber
om Ha
minish the visual impact of conventional constraints on im-
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ge representation, such as the Nyquist sampling rate.
here photorealistic reconstruction tends to draw attention

o its flaws, stylized rendering appeals to the viewer’s
magination to make an incomplete description seem be-
ievable. In this way, image stylization enables the com-
lexity of image representation to be reduced.

Effective graphic design demands that an image convey
he intended impression on its viewer, appearing true to its
urpose rather than merely faithful to its subject. However,
onventional image compression has been conceived as a
ully automatic process, concerned with photorealistic re-
roduction quality as an objective property of the image
lone, without individual consideration given to the pur-
ose or context of its presentation. Image compression al-
orithms typically optimize the encoding of an image with
espect to a predetermined rendering technique. The
raphic designer can only control the rate of data loss but
ot its visual consequences. Our approach provides an ef-
cient image representation designed to support diverse
tyles of presentation. Moreover, our image representation
oes not presuppose the style of its presentation, photore-
listic or not. In graphic design, an important distinction is
ade between content and style, text and typeface. Like-
ise, in computer graphics, as in object-oriented program-
ing, model and view often demand separate and indepen-

ent specifications to allow the same data to serve different
urposes in different contexts. We have applied this funda-
ental principle to color images. Our image representation

xplicitly separates the description of image content from
he specification of image style, allowing content and style
o be saved, changed and reused independently. For elec-
ronic imaging, the separation of representation from pre-
entation has important consequences. By relying on pro-
edural rendering primitives, our system can render stylized
mages at any desired output resolution. For instance, we
an synthesize the image grain when printing or displaying
low resolution image on a high resolution device. Also,

y keeping the continuous coordinates of the color samples
ndependent from the discrete pixels of the display device,
e can ensure that commonly applied spatial image trans-

ormations, such as scaling, rotation, and projection, affect
nly the mapping between the two coordinate systems and
eave sampled colors unchanged. In this way, we are able to
revent spatial image transformations from degrading the
aved image data, a common problem for images stored as
ixel arrays.

Every image has a resolution at which stylized depiction
ecomes inevitable. This situation becomes easily notice-
ble when an image is magnified or compressed. The com-
on artifacts of photorealistic image reconstruction, such

s blocking, blurring, ringing, and anisotropic distortion,
re a reflection of computational expediency and not nec-
ssarily human preference. Our work is based on the idea
hat, when distortion due to compression or aliasing due to
nterpolation cannot be avoided, its appearance should be
etermined by the designer and not the algorithm. Wher-
ver imperfection cannot be hidden, the graphic designer
hould be given the option of putting it to good use. An
mage may be more likely to receive the benefit of the
oubt when its appearance clearly manifests an intentional
hoice. Intentionality can make the difference between a

isible artifact being regarded as an accidental mechanical

ournal of Electronic Imaging 013009-1
flaw or an essential part of a picture’s unique character.
Intentional stylization endows an image with a visual heri-
tage. We give graphic designers the tools required to ex-
press their creative intentions by developing personalized
rendering styles that are especially well suited for display-
ing compressed imagery. Through exercising control over
the compression and interpolation artifacts, the graphic de-
signer may be able to improve the perceived visual quality
of an image by shifting the viewer’s expectations from a
photographic reproduction to an artistic expression.

Directing the viewer’s attention through stylized presen-
tation allows for selective emphasis. To convey a scene at a
glance, a comprehensible depiction need not be comprehen-
sive. For instance, the discrepancy between realism and
photorealism can be observed in the way photographers use
lenses to softly blur the background to lure the viewer’s eye
to focus on the foreground. In our system, such visual ef-
fects can be produced using an importance map. Some-
times, the deliberate omission of detail can stimulate the
viewer’s interest. As discussed by Strothotte and
Strothotte,68 psychological studies have found that ambigu-
ity invites scrutiny, thereby improving memory perfor-
mance. In another experiment, a rough line sketch was
found to be more effective at promoting discussion among
its viewers than a precisely shaded rendition of the same
scene. Abstraction can serve to engage the imagination. It
encourages the viewer to fill in the empty spaces between
the brush strokes with projections of his or her own expec-
tations, and thus the viewer is drawn into the picture, pos-
sibly becoming more inclined to identify with its message.
Rendering styles that encourage the viewer to complete the
picture could be considered a powerful form of compres-
sion. When Schmidhuber37 explored interactive drawing
techniques designed to support a concise description, he
speculated that a picture’s ability to capture the essence of
its subject may be related to how closely its visual com-
plexity reflects the minimal description length required
given the viewer’s prior knowledge. Though a picture may
be worth a thousand words or a thousand kilobytes, it only
takes less than a thousand bits of pixel data to render a face
instantly recognizable.69 Actually, the limited span of hu-
man attention can only process and recognize around
30 to 60 bits of visual information at a time.70 This dispar-
ity of information capacity between image representation
and visual perception offers great scope for future research
in applying stylized rendering to image compression.

9 Conclusion
Our technique gives the graphic designer the freedom to
choose the rendering style of a compressed image. We
present a straightforward approach to automated stylized
rendering for use with progressive image compression,
where a wide range of expressive image rendering styles
may be generated from a common multiresolution image
representation designed to support a compact, secure en-
coding. We develop a novel adaptive sampling algorithm
and a novel point-based rendering framework for image
stylization.

Clearly, these methods are not aimed at image compres-
sion applications for which objective visual fidelity is all
that matters. In practice, they are most appropriate in con-

texts where images communicate ideas or illustrate narra-
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ives. NPR techniques abandon the conventional goal of
xact reproduction in pursuit of the evocative capacity for
isual communication. For an efficient image representa-
ion, where some visual information needs to be implied
ather than encoded, stylized rendering has the advantage
f making abstraction and simplification appear legitimate.
n visual communication, clarity can be more valuable than
ompleteness. As this fundamental observation challenges
he assumptions of conventional image compression, it
oints the way for future research into the design of expres-
ive, effective, and efficient image representations. There is
n opportunity for image compression techniques to em-
race the venerable aesthetic principle that less is more.
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